

CCMC for Mission Science Support

Alex Glocer

NASA/GSFC

Outline

- Focus on two missions in particular
 - Van Allen Probes
 - MMS
- In each case I will discuss my view of:
 - What CCMC currently has that supports the science carried out by these missions.
 - How existing models at CCMC can be augmented to further support mission science.
 - What models and capabilities exist in the community that could help CCMC better support mission science.

Van Allen Probes

- CCMC has quite a few resources that can support Van Allen Probes science.
 - Global Magnetosphere Models (LFM, OpenGGCM, SWMF): magnetic mapping and global context
 - Ring Current Models (RCM,CRCM,CIMI)
 - Radiation Belt Models (RBE,CIMI, VERB)
- CCMC is also providing access to beacon data and realtime CIMI runs for "instant look".
 - http://ccmc.gsfc.nasa.gov/ccmc-swrt-display/CIMI-T96/ index.php
 - http://ccmc.gsfc.nasa.gov/RoR_WWW/RBSP/index.php

CASE STUDY: Nov. 14 2012

- RBSP A is seen to skirt the boundary OCB after about 3:30 UT until about 5UT.
- The periods where the s/c is closest to the OCB during this period correspond simulated By excursions.
- Some drop outs occur prior to this period so crossing OCB cannot explain those cases (at least in the model!)
- This demonstrates utility of magnetic mapping for understanding high energy particles

Examine the Response in Particle data

- It is useful to see the response in particle data as well.
- CRCM+RBE+SWMF available at CCMC, currently exports this data along the satellite trajectory.
- This capability is also present in the coupled RCM+SWMF
- We hope to soon have these types of plots available for any user to make when requesting a RoR.

Comparison with RBSPICE

Comparison with REPT

Z

RED=Closed

Sphere with radius 6.6 RE with topology sampled on surface

Lobe crossings are seen at geosynchronous orbit by 01A and 91 (Collaboration with Elizabeth MacDonald)

Visualization of a s/c proximity to a topological boundary is some times more useful for understanding data than just an actual crossing prediction.

November 14, 2012. Time [hours]= 1

Looking at Wave Generation

- EMIC, Chorus, and Magnetosonic waves are major players in energy and pitchangle evolution of IM populations.
- Some inner magnetosphere models available at CCMC can look at impacts of waves through the inclusion of diffusion coefficients.
- Models looking at wave generation are not currently available at CCMC.
- Similarly models that calculate the diffusion coefficients expected from waves are not currently available.
- These are significant areas of need that could be remedied.

Magnetospheric Multiscale Mission

- MMS will reveal, for the first time, the small-scale three-dimensional structure and dynamics of the elusively thin and fast-moving electron diffusion region.
- This is really local physics since the electron inertial length is on the order of only 10 km on the magnetopause.
- What can we do with global models typically available from CCMC?

Quantitative Reconnection Studies with Global Models

- Global magnetosphere models are available at CCMC, but tools the tools to extract reconnection relevant info is not yet.
- Modeling the location of magnetic nulls, separators, and separatrix surfaces can provide context for MMS observations

Supporting the Local Physics That MMS is After Requires More...

- While global models can provide context and some insight for MMS, the prime science objectives are local scale.
- Appropriate models for this type of science are really PIC simulations, but such models cannot currently be requested.
- CCMC hosting PIC simulation results submitted by modelers and providing visualization tools may be a way forward.
- PIC simulations embedded in a global simulations (like recently developed at UofM) is an exciting new capability.

What about Energetic Neutral Atoms (ENA)?

- Current (TWINS, IBEX) and past (IMAGE) missions have flown ENA detectors.
- ENA are one of the few ways we can use remote sensing for many plasma populations.
- Understanding the images can be hard without a model due to the LOS integration.
- Inner magnetosphere models at CCMC should have an option for ENA visualization of results.

Conclusions

- CCMC already provides access to a vast array of models capable of mission support.
- Augmentation of these models with post processing and visualization tools can enhance their utility for mission science.
- In some cases more models are needed: Inner magnetospheric waves and PIC models for reconnection.
- CCMC is already providing a great service to scientists trying to understand mission data!