TRIPL-DA at the CCMC

Roy Calfas, T. Gaussiran, D. Rainwater, A. Kuck

The University of Texas at Austin Applied Research Laboratories Austin, TX 78758

April 2014

Introduction

Goal

Support iono. science and space weather at the CCMC:

- Response to solar input
- Response to magnetic storms
- Daily or shorter variations (weather)
- Connections to climate science

Method

3DVAR data assimilation:

- TRIPL-DA is Data assimilation not a model, no model constraints
- Prior based on realistic physics (climo model, etc.)
- Arbitrary data sources possible
- Can get time evolution with Kalman filter
- True 3D specification
- Established technique in atmospheric weather modelling
- ► TRIPL-DA is ARL:UT's updated 3DVAR tool.

TRIPL-DA

- Specifies only n_e (not other chemical species)
- Works in $log(n_e)$ space
 - Guarantees positive-definite specification
 - Easy to ingest multiple data types
- ▶ Ingests a prior (background model)
- ▶ Global or regional grid
- User can specify arbitrary grid
 - Lat/Lon is independent of Alt, may be regular or irregular
 - Alt is specified explicitly
 - For every Alt layer the Lat/Lon grid is the same
- Grid can be as dense as you have CPUs to handle
 - 4° ×4° global grid is routine
 - $\frac{1}{2}^{\circ} \times \frac{1}{2}^{\circ}$ regional grid is not too stressful
 - Vertical layers to geosynchronous altitude
 - → Representativeness errors are smaller from finer resolution
- Sophisticated error and correlation handling
 - Ingested correlations can vary seasonally, daily, etc.
 - Instrument errors as specified by data provider
 - Representativeness errors calculated from grid and instrument collection details

Data Types Ingested

- Electron density
 - → In-situ measurements
 - → Ionosonde data $(n_e(F_2),h(F_2))$
- Ray TEC
 - → Ground-based GPS/GNSS rays
 - → GPS/GNSS occultations
 - → LEO beacons (C/NOFS, RadCal, Transit (dead), ...)
 - → LEO DORIS rays (ENVISAT, etc)
 - → GPS/GNSS over-the-satellite rays

Data Ingestion Example: DORIS LEO Data Results

Example: DORIS data assimilated by TRIPL-DA: background model considerably modified

Data Ingestion Example: GPS IGS Data Results

Trans-ionospheric ray data can markedly improve the bulk ionosphere specification.

- Deviations after ingestion are more Gaussian.
- Skew and shape are significantly corrected, leaving only Gaussian uncertainties from instrument & representativeness errors.

Ionosphere Dynamics - Example

TID observed over Wallops Island, 09 Oct 2006 – slice at 37N (5 min timesteps)

ightarrow TRIPL-DA can capture small-scale dynamics on short time scales.

CCMC Implementation

- Emphasis on data not the model(s)
- · Operate in Near Real Time
- · Operate continuously
- · First implementation based on GNSS data only
 - IGS rapid-update stations
 - File arrival times at GSFC impose a 24-38 min latency
 - ullet Cumulative effect is an output valid for HHMM UTC at HHMM +1H UTC
- · Upgrades to real time and other data sources as called for

CCMC Implementation

 \rightarrow Simplified data flow

9 / 10

CCMC Implementation

- · TRIPL-DA requirements:
 - Only tested on RHEL (v4, 5, or 6) x86_64
 - Requires Fortran 2003 compliant compiler (only Intel compiler suite has been tested)
 - Currently supports MPI and Shared-Memory schemes
- · Output is netCDF
 - Compatible with v3 and v4 libraries
 - Contains grid parameters (Altitudes, Latitudes, Longitudes)
 - Includes the prior (IRI, RIBG, etc)
 - Contains the 3DVAR analysis data (N_e)
- · Simple python (v2.7) analysis tools
 - Works on any *nix with python
 - Requires matplotlib, basemap, netCDF4