CTIPe model at CCMC

N. Maruyama, T. Fuller-Rowell, M. Fedrizzi, T. Matsuo, T.-W. Fang, F. Wu, H. Wang

CU/CIRES

M. Codrescu, R. Akmaev

NOAA/SWPC

J. Raeder, W. Li

University of New Hampshire

S. Sazykin, F. Toffoletto, R. Spiro, R. Wolf

Rice University

A. Richmond, A. Maute

NCAR/HAO

Outlines

- What is CTIPe model?
- Validation: Neutral mass density, Phase velocity
- Data Assimilation: Neutral mass density
- Real time CTIPe
- CTIPe Model Limitations
- A New Ionosphere Plasmasphere Electrodynamics (IPE) model
- Coupling to other regimes: RCM, OpenGGCM
- Whole Atmosphere Model (WAM)
- Future Challenges
- Summary

Coupled Thermosphere Ionosphere Plasmasphere self-consistent electrodynamics (CTIPe)

[Fuller-Rowell et al., 1980; Millward et al., 2001]

- Global thermosphere 80 500 km: eq. momentum, energy, composition, V_x, V_y, V_z, T_n, O, O₂, N₂,
- High latitude ionosphere (L>~4): 80-10,000 km: eq. continuity, momentum, energy, O+, H+, O₂+, NO+, N₂+, N+, V_i, T_i,
- Plasmasphere, and mid-/low-latitude ionosphere (L<~4)
- Self-consistent electrodynamics

Model Inputs:

- solar UV/EUV
- Tidal forcing
- TIROS/NOAA Auroral precipitation
- Weimer convection E-field

Neutral Mass Density agrees well with Obs.

- response of the neutral density to moderate storms captured by the model.
- indicating energy budget well described in the model.
- JH: major energy source dissipated from magnetosphere to IT system.
- JH >> Auroral precipitation (factor of ~4)
- NO: major cooling process of the thermosphere, controlling the recovery

[Fedrizzi et al., 2011] AFOSR NADIR-MURI

Traveling Atmospheric Disturbances (TAD): phase velocity agrees with obs.

CHAMP

- TAD: JH→Pressure gradient→ disturbed U, T,N, propagating to equator, opposite hemisphere
- movie: example of TAD in Un
- Phase velocity of density waves: agrees with obs.
- Great news! No previous wind data!

15 May 2005 [Bruinsma et al., 2011] dayside results (LT=9.3)

DA Improves Neutral Mass Density Specification

PAPER IN PREPARATION

Real Time CTIPe

- http://helios.swpc.noaa.gov/ctipe/TEC.html
- Automatically get the ACE (solar wind) data to drive WEIMER and NOAA/TIROS hemispheric power to drive the auroral precipitation.
- ~20 min. ahead of real time (forecast)
- Figures updated every 10 min: Ne, Tn, O/N2, NmF2, HmF2, TEC, etc.
- Automatically validated everyday @60 stations:
 NmF2 & hmF2
- http://helios.swpc.noaa.gov/ctipe/
 VandV_Stations_nmf2_hmf2.html
 [Codrescu et al., 2012, in press]

CTIPe Model Limitations

- Tilted dipole geomagnetic field: disagreement with observation 19:
- No transport in zonal direction & across boundary:
 - → SEDs, TEC gradients
- No self-consistent calculation of Te/Ti:
 - → a NEW IPE model
- Empirical Polar Cap Potential (Weimer):
 - → coupling to global MHD
- Climatological tidal forcing from lower atmosphere:
 - \rightarrow WAM
- No plasma irregularity physics included
 - → coupling to Irregularity model

New Ionosphere-Plasmasphere-Electrodynamics (IPE) model

Ne Tilted Dipole (CTIPe)
Te: IPE

Te IGRF (IPE)

PAPER IN PREPARATION

Te: CHAMP obs. Climatology

- Realistic geomagnetic field (IGRF) by APEX [Richmond, 1993]
- Global & seemless transport all the way to the poles
- Te/Ti & photoelectron flux: self-consistent calculation [Richards et al.]
- Te: qualitative agreement with CHAMP obs. climatology
- High/flexible Spatial Resolution (TEC gradients)
- Self-consistent calculation of ionospheric potential [Richmond et al.] on the same grid
- New CTIPe coming soon with the new IPE model

Electrodynamic Coupling to RCM: Penetration E-fields

March 31 2001 Storm

- Observation is obtained from ΔH-magnetometer inferred Drift: limited to Dayside only.
- Daytime eastward E-field dominated by PP effect in both Philippine (122deg) and Jicamarca (283deg).
- Nightside: Both PP and DD effects are comparable. PP is westward, whereas DD is eastward. The combination makes the total storm time Effeld look more complicated.

GLON=283[deg]

PAPER IN PREPARATION

day

IT system feedback on Magnetosphere (Overshielding)

Eradial[mV/m]

Eazimuth[mV/m]

Plasma pressure [nT]

+Earthward

DAWN

coupled CTIP-RCM S

DUSK

PAPER IN PREPARATION

standalone RCM

Coupling to OpenGGCM: improved specification of high latitude forcing

OpenGGCM JH

DMSP Poynting flux

PAPER IN PREPARATION

OpenGGCMHCTIM CHAMP density

IMF By IMF Bz

Joule heating /= Tn (Nn)

CTIPe Joule Heating (JH):

(A) Enhanced convection and aurroal Σ increase JH.(B) JH enhances both in magnitude & space.

Tn response:

- Tn increases as a result of the JH
- spatial distribution: JH /= Tn because Tn increases as a result of integrated effect over the previous 20 hours [Fuller-Rowell et al., 1994].

Whole Atmosphere Model (WAM)

WAM = Extended GFS + Physics

Operational Global Forecast System@NCEP

- T382L64 (~.3°X.3°, ~0-62 km)
- Hydrology, surface exchange processes, ozone transport, radiation, cloud physics, etc.
- 4 forecasts daily
- Ensemble (14 members) forecast up to 16 days

Joule Heating and Auroral Processes

Major Species Composition

Ion Drag and Molecular
Dissipation

Eddy Mixing

Radiative Heating and Cooling

Parameterized Gravity
Waves

Troposphere: Convection Hydrology, Clouds

Planetary Boundary Layer

Surface: Orography, Drag, Land-Sea Contrast Spectral Dynamical Core

WAM

- 150 layers (\sim 0-600 km) $\Delta \rho/\rho \sim 10^{13}$
- Numerical stability issues
- Variable composition thermodynamics
- Column physics (some exceptions)
- Timing: ~13 min/day on 21 nodes @ T62L150

Sudden Stratospheric Warming (SSW) Impacts IT system

- Modified polar vortex, T increase several tens [K]
- ionospheric equatorial E-field reversed in PM
- SSW reproduced by WAM
- Response of the Equatorial Efield to SSW reproduced by feeding the WAM winds into the electrodynamics solver.
- Very hot! ISSI workshop, Bern, Nov 2011

PAPER IN PREPARATION

Future Challenges: Application to plasma irregularities?

JULIA radar observations (Hysell & Burcham, 1998)

WSA-ENLIL Solar Wind

Magnetospheric Models

- Convection electric fields
- Auroral precipitation

Irregularity Models

WAM-IPE

- Large-scale dynamics
- Wave seeding
- Plasma densities
- Electric fields
- · Plasma drifts

Summary

- Ionosphere-Thermosphere models have become mature
- Basic climatology understood, reproduced, but not yet weather
- Validation needed to identify what's missing in the model: e.g., penetration E-field, Cusp Poynting flux enhancement, SSW, plasma irregularities, etc.
- Coupling to other regimes & DA have become more important to address the new science questions in our group (& in the IT community as well?)
- Choose the appropriate model(s) to tackle your science question

Collaboration with CCMC

- Continue to provide updates when the latest version available
- Flexible Model Inputs: e.g., Weimer (empirical) → AMIE (data assimilation)
- Real Time Forecasts for International Space Station (ISS) (M. Hesse)
- NASA Heliophysics Summer School 2010/2011 (J. Sojka):

http://ccmc.gsfc.nasa.gov/support/HSS_2011.php

• Participate in challenges: CEDAR CETI (B. Emery), joint GEM-CEDAR

Thanks!

Acknowledgements:

- NASA & CCMC
- NSF
- AFOSR
- NOAA & SWPC