TRIPL-DA: A New Opportunity at CCMC

Roy Calfas, T. Gaussiran, M. Pierce, D. Rainwater, W. Shutt

The University of Texas at Austin Applied Research Laboratories Austin, TX 78758

Jan 17, 2012

Introduction

Goal

Specify the ionosphere completely to support iono, science and space weather:

- Structure (bubbles, sporadic E, profile shapes, auroral ovals, ...)
- Dynamics (TIDs, connection with AGWs, ...)
- Response to solar input
- Response to magnetic storms
- Daily or shorter variations (weather)
- Connections to climate science

Method

3DVAR data assimilation:

- Prior based on realistic physics (climo model, etc.)
- Arbitrary data sources possible
- Can get time evolution with Kalman filter
- True 3D specification
- Established technique in atmospheric weather modelling
- ▶ TRIPL-DA is ARL:UT's updated 3DVAR tool.

TRIPL-DA

- Specifies only n_e (not other chemical species)
- Works in $log(n_e)$ space
 - Guarantees positive-definite specification
 - Easy to ingest multiple data types
- Ingests your favorite background model prior
- ▶ Global or regional grid
- ▶ User can specify arbitrary grid
 - Lat/Lon is independent of Alt, may be regular or irregular
 - Alt is specified explicitly
 - For every Alt layer the Lat/Lon grid is the same
- Grid can be as dense as you have CPUs to handle
 - 4° × 4° global grid is routine
 - $\frac{1}{2}^{\circ} \times \frac{1}{2}^{\circ}$ regional grid is not too stressful
 - Vertical layers to geosynchronous altitude
 - → Representativeness errors are smaller from finer resolution
- Sophisticated error and correlation handling
 - Ingested correlations can vary seasonally, daily, etc.
 - Instrument errors as specified by data provider
 - Representativeness errors calculated from grid and instrument collection details

Data Types Ingested

- Electron density
 - → In-situ measurements
 - \rightarrow Ionosonde data $(n_e(F_2), h(F_2))$
- Ray TEC
 - → Ground-based GPS/GNSS rays
 - → GPS/GNSS occultations
 - → LEO beacons (C/NOFS, RadCal, Transit (dead), ...)
 - → LEO DORIS rays NEW! (cf. GEOScan proposal)
 - → GPS/GNSS over-the-satellite rays

Data Ingestion Example: DORIS LEO Data Results

Example: DORIS data assimilated by TRIPL-DA: background model considerably modified

Data Ingestion Example: GPS IGS Data Results

Trans-ionospheric ray data can markedly improve the bulk ionosphere specification.

- Deviations after ingestion are more Gaussian.
- Skew and shape are significantly corrected, leaving only Gaussian uncertainties from instrument & representativeness errors.

Ionosphere Dynamics - Example 1

TID observed over Wallops Island, 09 Oct 2006 – slice at 37N (5 min timesteps)

→ TRIPL-DA can capture small-scale dynamics on short time scales.

Ionosphere Dynamics - Example 2

Equatorial Fountain observation (Halloween Storm 2003)

→ TRIPL-DA can capture small-scale dynamics on short time scales.

TRIPL-DA at CCMC

We have a small, internally funded, grant to install and test TRIPL-DA at the CCMC

- Research team has logins and some testing has been done
- Contingent on funding:
 - → Compile TRIPL-DA
 - → Run test suite and compare results
 - → Coordinate with CCMC staff to make TRIPL-DA available for ionospheric runs

Ionospheric Research at ARL:UT

We continue to research a number of ionospheric topics at ARL:UT

- Improving the background model ingested into TRIPL-DA
- Ionospheric data errors
 - → Instrument thermal noise
 - → Ionospheric spatial correlation using GNSS data

Background Models Ingested

TRIPL-DA is very successful at generating accurate TEC maps. But let's consider the background models used more carefully...

USU GAIM-GM

- \rightarrow Very coarse, so is interpolated to finer grid ($\sim 4\frac{2}{3}^{\circ} \times 15^{\circ}$ @ equator as currently available)
- → Limited in altitude (1400 km);
- \rightarrow Limited in latitude (simply IFM poleward of $\pm 67\frac{2}{3}^{\circ}$)

• RIB-G

- → Frequently overestimates topside (by quite a bit)
- → Not updated in many years

IRI

- → Under current development by COSPAR/URSI
- → Limitied in altitude (2000 km)
- → Topside can be corrected

Model	Min. Alt. [km]	Max. Alt. [km]	Grid Size	Variances Present
GAIM	90	1400	$6^{\circ} imes 15^{\circ}$	yes; IFM poleward of 662/3°
RIB-G	90	40000	user-specified	no
IRI	90	2000	user-specified	yes

► Compelling need for a new ensemble model for completeness!

Ionospheric Data Errors

Starting Point:

Most ionospheric data sources have poorly-characterized errors.

→ This will come as a surprise to some users.

Error sources include:

- · Instrument (multiple sources; unique for each instrument type)
- · Registration how accurately an observation is stamped in space & time
- · Representativeness how well observational data matches the intentioned measurement
 - → spatial coverage/extent
 - → temporal coverage/extent
 - → spatial/temporal mixing

Many (not all) users consider only instrument errors!

▶ Our current study uncovers misunderstood GPS instrument errors.

GPS Instrument Errors: Thermal Noise

<u>Method:</u> 2 receivers, 1 antenna (common), relative diff. between two satellites, then relative diff. between two receivers: measures thermal noise

GPS Instrument Error: Spatial Difference

Method: Residual slant TEC (relative rays) between two stations 10 km apart.

▶ This is MUCH larger than conventional wisdom.

Summary

- ▶ TRIPL-DA is a significant evolution in ionosphere 3DVAR tools
 - · New data types greatly broaden capability
 - · Fine resolution enables study of detailed dynamics
 - · Captures magnetosphere as well
 - · Ensemble background model coming soon
- Capability to study detailed ionospheric dynamics demonstrated
 - · TIDs observed in action
 - · Equatorial fountain imaged temporally
- ▶ lonospheric science is data-poor need more sources!
 - · Note that many potential data sources aren't good enough (too-large errors)
 - · Current data sources are mostly regional and exclude oceans
 - · ARL:UT JHU/APL proposal to put DORIS Rx on Iridium-NEXT
- ▶ Ongoing study of iono. data source errors
 - · GPS thermal noise is much larger than assumed
 - · GPS ground data representativeness errors way underestimated
 - · Future work will examine representativeness in more detail

Contact Information

Thomas Gaussiran II, Director Space and Geophysics Laboratory gauss@arlut.utexas.edu

Roy Calfas, Research Associate Space and Geophysics Laboratory calfas@arlut.utexas.edu

http://sgl.arlut.utexas.edu

