USAF Space Weather Modeling Needs and V&V

Lt Col Christopher Smithtro Commander, 16th Weather Squadron Air Force Weather Agency

Overview

- "Requirements"
- Models used at AFWA
- Ensembles
- Validation and Verification
- AFWA-CCMC Partnership

Warfighter Impacts

X-Rays, EUV, Radio Bursts

- SATCOM Interference
- Radar Interference
- HF Radio Blackout
- Geolocation Errors
- Satellite Orbit Decay

Scintillation

- Degraded SATCOM
- Dual Frequency GPS Error
 - Positioning
 - Navigation
 - Timing

Proton Events

- High Altitude Radiation Hazards
- Spacecraft Damage
- Satellite Disorientation
- Launch Payload Failure
- False Sensor Readings
- Degraded HF Comm (high latitudes)

Geomagnetic Storms

- Spacecraft Charging and Drag
- Geolocation Errors
- Space Track Errors
- Launch Trajectory Errors
- Radar Interference
- Radio Propagation Anomalies
- Power Grid Failures

Model "Requirements"

- Impacts drive requirements
 - Mitigate or leverage impact using knowledge/forecasting of space environment
- Forecasts must be: Timely, Accurate, and Relevant
 - Timely climatology, post-analysis, 5 days lead-time
 - Accurate What do the users really need? What is a realistic end-goal?
 - Relevant How do we translate *flux, density, magnetic field*, etc. into *impacts*
- Cost of transitioning new models must be justified by benefit

Modeling Challenges

- Do we know the physics?
- Do we have the data?
 - Quality, quantity, availability
- Can we depict/communicate the results in a meaningful way?
- Are we sure we've made an improvement?
 - Defining and quantifying impacts
- Can we afford to use/implement it?
 - Budget/personnel
 - Portability, optimization, robustness
 - Common formats

Operational Models

- Global Assimilation of Ionospheric Measurements (GAIM)
- Solar Wind/Interplanetary Shock
 - e.g. Hakamada-Akasofu-Fry (HAF) Model
- Proton event prediction
- Radiation Belts
 - e.g. Relativistic Electron Prediction, Radiation Belt Environment (RBE), Magnetospheric Specification & Forecast Model (MSFM)
- Auroral Oval: Hardy Oval, Ovation
- Real-time & predicted Dst, Kp
- Impact Products
 - e.g. HF Illumination, GPS Single Frequency Error, D-Region Absorption, WBMOD Scintillation, High Flyer Radiation Dose

Modeling Needs

Solar

- Solar wind speed
- Flare
- Coronal Mass Ejection
- Proton Event
- Solar Cycle

IMF

- Solar wind speed
- Coronal Mass Ejection
- Proton Event

Magnetosphere

- Magnetopause boundary
- Particle acceleration

Magnetosphere (cont.)

- Radiation Belt energy/density
- Energy deposition in I/T
- Currents

Ionosphere

- Electron density/temperature
- Scintillation
- Currents

Thermosphere/Mesosphere/Stratosphere

- Neutral densities
- Winds
- Radiation dose

Stochastic Forecasting

- AF moving to ensembles
- Products
 - Stamp charts
 - Probability plots
 - Point probabilities
 - Near Future customized thresholds, joint probabilities

Issues:

- Computational resources
- Education
- Machine-to-machine
- Legacy products

Provide decision making tools

Bridging the Gap

Stochastic Forecast

Using PDFs and System Thresholds

Binary Decisions/Actions

Probabilistic Decision Aids — a tool for Operational Risk Management (**ORM**)

Stochastic Verification

V&V Definition

Validation: A determination, based on performance, that a model is ready for operational use

Used to decide whether to implement a model into operations

<u>Verification</u>: The continuous process of measuring the performance of an operational model to determine how well its performing

Used for forecaster awareness and to identify areas for model improvement

AFWA Use of V&V

- Robust V&V supports Advocacy, Acquisition, and Operations
- Advocacy: Metrics needed to quantify the benefit of new and existing models
- Acquisition: Select/prepare models for operations
 - Model-to-model 'fly-offs'
 - Document strengths, weaknesses, and biases
 - Processing requirements, efficiency, storage needs
 - Transition decision: real-time inputs, automated/hands-off runs
- Operations: Real-time metrics to track longer term biases and daily variations in performance
 - Daily performance statistics critical to model confidence
 - Identify and prioritize model improvements
 - Tuning efforts

AFWA - CCMC Partnership

- CCMC can provide assistance with all levels of V&V
 - Identify & test candidate metrics
 - Advocacy for adoption of community standards
 - Conduct model fly-offs as honest broker
 - Document model performance/biases and communicate with developers
- CCMC can lead the way into stochastic modeling
 - Shock propagation
 - Flare and proton event prediction

Summary

- Impacts drive requirements
- What do the users need/want?
 - Risk management (ORM)
- What can we reasonably expect to provide?
 - Budget; available data
- Stochastic forecasting
- V&V
- Continue close relationship with CCMC

Questions?

U.S. AIR FORCE