

6th CCMC Community Workshop January 16–20, 2012 Space Weather Tools and Services

aeronomie.be

BIRA-NASA Space Weather Center Collaboration

M. Kruglanski BIRA-IASB

- BIRA-IASB = Belgian Institute for Space Aeronomy
 - Who are we?
 - What are we doing?
- NASA-SWC Collaboration
 - BIRA Models
 - COMESEP
 - SPENVIS-NG

Belgian Institute for Space Aeronomy

- Federal Scientific Institute
- Research topics
 - Climate
 - Ozone
 - UV index
 - Air Quality
 - Space Physics
 - Planetary Atmospheres
- Divisions
 - Space Physics
 - Atmospheric Composition
 - Solar Radiation in Atmospheres
- Scientific Services

aeronomie.be

Belgian Institute for Space Aeronomy

- Neighbors:
 - Royal Meteorological Institute
 - Royal Observatory of Belgium → RWC / SIDC

Solar-Terrestrial
Centre of
Excellence

Located in Brussels

Scientific Services > Space Weather Projects

A

 Space Environment Information System (SPENVIS) ESA

aeronomie

Space Environment Information System

- A
- aeronomie.be

- ESA operational software
- User-friendly human interface to models of the space environment and its effects
- Main resource for
 - specifications (early project phase)
 - first-step analyses
 - quick answers
- In case of problems related to
 - cosmic rays
 - solar energetic particles
 - natural radiation belts
 - magnetic fields
 - space plasmas
 - upper atmosphere
 - meteoroids and debris
 - Illumination
- Target user domain
 - Spacecraft designer

Who is using SPENVIS?

- Large still-growing worldwide community
 - Spacecraft designers or component designers
 - Educational programs
 - Scientists (model developers)

Distribution of active users per month and origin

- 45% from Europe
- 30% from United States

www.SPENVIS.oma.be

COMESEP: Forecasting the Space Weather Impact

Project Coordinator: Norma B. Crosby

Consortium:

- Belgian Institute for Space Aeronomy
- University of Graz
- Royal Observatory of Belgium
- HVAR Observatory (University of Zagreb)
- Technical University of Denmark
- National Observatory of Athens
- University of Central Lancashire

External Collaborators

- Nandita Srivastava: Udaipur Solar Observatory, India
- Michael Hesse: Community Coordinated Modelling Center
- Dusan Odstrcil: George Mason University, NASA/GSFC

COMESEP objectives and work logic

- Main objective: developing tools for forecasting geomagnetic storms and solar energetic particle (SEP) radiation storms
- Work logic

COMESEP definition of risk.

	•
•	
-	
- 5	_
0	
3	_
₹	
=	=
_	3
	٦.
•	,
C	ֹ
- 2	•
•)
	_
7	=
•)
•	
	_
π	7
	•
•	•
	•
•	•
•	_
•	
=	
	13
U	U
•	
_	

ence	Almost certain	M	н	Ι	ш	Е
curre	Likely	М	М	н	н	E
of oc	Possible	L	М	М	Н	E
Likelihood of occurrence	Unlikely	L	М	М	М	Н
Likelil	Rare	L	L	М	М	Н
	Storm Level	Minor	Moderate	Strong	Severe	Extreme
	Physical Measure (Kp)	5	6	7	8	9

Impact or Magnitude of event

 $Risk = Likelihood \otimes Impact$

E	Extreme Risk
Н	High Risk
М	Moderate Risk
L	Low Risk

(based on NOAA Space Weather scales)

Collaboration > NASA SWx Center

- BIRA Models → CCMC
- Plasmasphere density model Viviane.Pierrard@aeronomie.be
- Exospheric Solar Wind model Herve.Lamy@aeronomie.be
 - ENLIL @iSWA
 - European Space Weather Portal Stijn.Calders@aeronomie.be
 - COMESEP Norma.Crosby@aeronomie.be
 - Data exchange / web services
 - Post-event analysis
 - SPENVIS Next Generation
 - Miscellaneous

Planetocosmics (GEANT4 based)

aeronomie.

ENLIL@iSWA > COMESEP

- Risk Alert Demonstrator
 - Background Solar Wind
 - **←** ENLIL
 - → SEP propagator
 - CME Propagation
 - ← Cactus (http://sidc.be/cactus/)
 Computer Aided CME Tracking
 - ← Operator @ ROB [6 hours in advance]
 - → ENLIL → iSWA
- Current status:
 - Studying ways forward

Post-event analysis

- Service demonstrator for spacecraft designers: estimating space environment and effects actually experienced by a spacecraft, instrument, ...
- Use case: SREM onboard INTEGRA crossing:
 - Radiation belt
 - Interplanetary medium
- Current status:
 - Selecting models
 - Prototyping the data exchange

SPENVIS Next Generation

- Current SPENVIS: initial development in 1996
- Design and implementation of a new framework
- Main objective:
 - Implementation of a new system as a web-based service-oriented distributed framework supporting plug-in of models related to the hazardous space environment, and including both
 - a user-friendly interface for rapid analysis and
 - a machine-to-machine interface for interoperability with other software tools
- → Interaction with tools at NASA SWx Center?
- Way to direct access to drive execution of some NASA models
- Current status: SPENVIS-NG project started (15-Nov-2012)

Collaboration BIRA - NASA SWx Center

- Started in July 2010 (COSPAR @ Bremen)
- Meeting
 - November 2010 @ Brussels
 - May 2011 @ Washington DC
 - November 2011 @ Namur
 - January 2012 @ Key Largo
- Some challenging objectives

