

NASA OPERATIONAL SPACE WEATHER NEEDS

John R. Allen, NASA/HEOMD

CCMC Workshop Key Largo, Fl January 16-20, 201

- Introduction
- NASA Space Weather Needs
- Changes Within NASA
- Operational Space Weather Concerns
- Collaborative Activities
- Looking Toward the Future
- Summary

- Forecasting
 - For current human operational activities
- Forecasting
 - For current robotic missions
- Forecasting
 - For future exploration activities

U.S. National Space Policy Goals

- **■** Energize competitive domestic industries
- Expand international cooperation
- Strengthen stability in space
- Increase assurance and resilience of mission-essential functions
- Pursue human and robotic initiatives
- **■** Improve space-based Earth and solar observation

"NASA has a key role in achieving the goals defined in the new policy. We are committed to working with other agencies, industry, and international partners to achieve national goals in exploration - human and robotic - and technology development that will ensure a robust future for the U.S. and our friends around the world." – NASA Administrator Charles Bolden, June 28, 2010

I.S. Law: NASA Authorization Act of 2010

- and the second s
- The U.S. Congress approved and President Obama signed the National Aeronautics and Space Administration Authorization Act of 2010
 - Bipartisan support for human exploration beyond low Earth orbit
- The law authorizes:
 - Extension of the International Space Station until at least 2020
 - Support for a commercial space transportation industry
 - Development of a Multi-purpose Crew Vehicle and heavy lift launch capabilities
 - A "flexible path" approach to space exploration opening up vast opportunities including near-Earth asteroids (NEA), moon, and Mars
 - New space technology investments to increase the capabilities beyond low Earth orbit

The NASA Vision

To reach for new heights and reveal the unknown, so that what we do and learn will benefit all humankind.

NASA Strategic Goals

- 1. Extend and sustain human activities across the solar system.
- 2. Expand scientific understanding of the Earth and the universe in which we live.
- 3. Create the innovative new space technologies for our exploration, science, and economic future.
- 4. Advance aeronautics research for societal benefit.
- 5. Enable program and institutional capabilities to conduct NASA's aeronautics and space activities.
- 6. Share NASA with the public, educators, and students to provide opportunities to participate in our mission, foster innovation, and contribute to a strong national economy.

NASA Organization

Office of the Chief Technologist

Office of the Chief Scientist

Office of the Administrator

Charles Bolden

Administrator

Lori Garver

Deputy Administrator

10 NASA Centers

Aeronautics Research Mission Directorate

ARMD

Science Mission Directorate

SMD

Human Exploration and Operations
Mission Directorate

HEOMD

Space Operations Mission Directorate

SOMD

Exploration Systems Mission Directorate

ESMD

The ISECG Global Exploration

Roadmap

- The first iteration of the Global Exploration Roadmap was released by International Space **Exploration Coordination Group in** September 2011
- Reflects the international effort to collaboratively define technically feasible and programmatically implementable exploration mission scenarios with the common goal of humans on the surface of:
 - Asteroid, Moon, Mars
- A non-binding reference informing decisions related to exploration preparatory activities

International Cooperation: Vital

Incremental steps to steadily build, test, refine, and qualify capabilities that lead to affordable flight elements and a deep space capability.

Moon: 237K mi / 381K km

Into the Solar System

- Interplanetary Space
- Initial Near-Earth Asteroid Missions

Extending Reach Beyond LEO

Lunar Flyby & Orbit

- Cis-Lunar Space
- Geostationary Orbit
- **High-Earth Orbit**

Initial Exploration Missions

- International Space Station Space Launch System

- Orion Multi-Purpose Crew Vehicle
- 21st Century Ground Systems Commercial Spaceflight Development

Mars: 33,900,000 mi 54,556,000 km

Planetary Exploration

- Mars
- Solar System

Exploring Other Worlds

- **Low-Gravity Bodies**
- Full-Capability Near-Earth **Asteroid Missions**
 - Phobos/Deimos

Surface Capabilities Needed

Lunar Surface

High Thrust In-Space Propulsion Needed

ISS: 237 mi / 381 km

The International Space Station

Cargo Transportation

Space Exploration Technologies (SpaceX), Orbital Sciences

Future Crew Transportation

Blue Origin, Sierra Nevada Corporation, SpaceX, The Boeing Company

Exploration Systems Development

These programs will develop the launch and spaceflight vehicles that will provide the initial capability for crewed exploration missions beyond LEO.

- The **Space Launch System (SLS)** program will develop the heavy lift vehicle that will launch the crew vehicle, other modules, and cargo for these missions
- The Orion program develops the vehicle that will carry the crew to orbit, provide emergency abort capability, sustain the crew while in space, and provide safe re-entry from deep space return velocities
- SLS and Orion will support Ground **Operations and Mission Operations**

SLS Progress

DM-3 Static Test, Sept. 2011

J-2X 500-Second Engine Test, Nov. 2011

J-2X Combustion Stability Test, Dec. 2011

Orion MPCV Progress

Water Landing Tests

Pad Abort 1 Flight **Test**

Acoustic Chamber Testing

Space Life and Physical Sciences Research and Applications

Robotic Precursor Missions Pave the Way for **Future Human Exploration Missions**

Space Communication and Navigation Networks

Interoperability Allows Flexibility and

Aeronautics Research Mission Directorate (ARMD)

- Aeronautics research and space exploration have always been linked.
- Advances in understanding aerodynamics, aerothermodynamics, flight dynamics and control, materials, structures, and human interface technologies helped make spaceflight possible.
- NASA continues to rely on its aeronautics expertise to solve challenges of flying vehicles into space and other planetary atmospheres.

Operational Concerns

Launch

- -Communication loss (Solar Proton Event, geomagnetic storming, solar flaring)
- -Launch into higher radiation environment

Nominal IVA Mission Ops

- -Crew Health: minimize exposure risk
- -Damage to orbital/transit vehicles
- -Extended mission lengths (Lunar, Cis-Lunar, NEO, Mars)

EVA

- -Increased crew exposure
- -Hardware damage
- -Up to ~7 hour duration
- -Possibly longer lead time to shelter (Lunar)

Space Wx Collaboration

- Operations and Science Collaboration
 - NASA Space Weather Work Group
- SRAG receiving Space Weather Alerts
 - Weekly reports from the NASA GSFC Space Weather Center
- SRAG inputs have helped in designing some of the iSWA features
 - Magnetic connectivity product for SEP
- Collaborative project: Integrated Solar Energetic Proton (ISEP)
 - Alert warning system
 - Collaboration between JSC, GSFC, MSFC and LaRC
 - Largely an exercise in the transition of research to ops
 - Will hit probabilistic models for mission planning, all-clear forecasting, and real-time dose projection once an event kicks off
 - Being supported by OCT Game Changing program

Looking Towards the Future

- ISS centerpiece of human spaceflight activities until at least 2020
- Research/technology breakthroughs aboard ISS will facilitate travel to destinations beyond low Earth orbit
- Destinations for human exploration remain ambitious: moon, asteroids and Mars
- · Continue to undertake world-class science missions to
 - · observe our planet,
 - reach destinations throughout the solar system and
 - peer even deeper into the universe
- Advance aeronautics research to create a safer, more environmentally friendly and efficient air travel network for the Next Generation Air Transportation System
- Continue to inspire the next generation of scientists, engineers and astronauts by focusing on STEM education initiatives
- Flexible path: for human and robotic missions to...

Summary

- Cooperation between human space ops (SRAG) and CCMC is excellent and continues
- Challenges of working within a constantly changing and constrained environment
- Change is focused on the future
- Operations and Science
 - Research to Operations
- Promising collaborations