CCMC Workshop, January 20, 2012

Using CCMC Space Weather Modeling Resources in a Capstone Undergraduate Course

Michael W. Liemohn

Atmospheric, Oceanic, and Space Sciences Dept., University of Michigan

AOSS 477: Space Weather Modeling

- U-M offers a senior-level course in space weather modeling
 - Taken by all Space Weather concentration students in our ESSE BSE degree program
 - Also taken by a fraction of the space physics PhD students
 - Also taken by a few M-Eng in Space Engineering students
- This year: 12 enrolled in the course
 - Seems reasonable given the student populations
 - No baseline: this is only our second time offering it as a real course

History of 477

- Aaron Ridley and I "taught" it 4 years ago
 - Taught as a directed study
 - Met for only 1 hour each week, very little instruction
 - 5 different modeling projects, all written reports
 - No coverage of what's in the codes
 - Students loved it but wanted more in-class time
- Moldwin taught it 2 years ago, as AOSS 477
 - First offering as a "real" classroom course
 - No PPT files to pass on to me...all journal article reviews
 - Second half: no class at all, just individual meetings
 - Students loved it but still wanted more in-class time

What is it about?

- *Using* state-of-the-art space weather models
 - Not really a programming course
 - We have a different one for that
- Synthesis, capstone course for the undergraduates
 - Applying knowledge learned in previous courses
 - They have taken several others up to this point:
 - AOSS 323: Earth System Analysis
 - AOSS 370: Solar-Terrestrial Relations
 - AOSS 410: Earth System Modeling
 - AOSS 450: Geophysical Electromagnetics
 - AOSS 462 Atmospheric and Space Instrumentation
 - PHYS 405: Electricity and Magnetism
 - NERS 471: Plasma Physics

Sidenote on AOSS 370

- This course is a lot like Knipp's ASEN 5335 @ CU
 - First-time-exposure to space physics
 - Emphasize the conceptual level first, then equations
 - Highly data oriented with a mixture of theory
 - No modeling, just some model-result graphics
 - Difference: for junior-level undergrads, not MS and PhD students
- Culminating final project: space weather event analysis
 - Give them a day and let them decipher it
- Haven't used CCMC for this class, but iSWA/SWE is perfect for it

AOSS 477 is a report-based course

- Students learn about the guts of numerical models used for space physics
 - Lots of details on equations being solved and numerical methods used to convert equations to code
 - Examples across the entire spectrum of space physics
- Students use some of the models and conduct their own space weather numerical investigation
 - Several projects on using codes and writing/presenting reports based on their numerical experiments
 - Data used as model input and for model result comparison

Even more on what they learn

- But also, they will:
 - Hone your technical report writing skills
 - Improve your public presentation skills
 - Read/discuss a few journal articles and decide what is good/bad about them
- What's up with this last one...journal articles?
 - Final report is essentially a journal article on numerical modeling of a space physics phenomenon/region
 - Literature search, model description, sensitivity study, data-model comparison, interpretation of their findings, and summary
 - I teach this by having them critique other modeling papers

Winter 2012 Class Schedule

- Weeks 1 5: The CCMC, paper critiques
 - Paper critique #1: Due Friday, January 13
 - Paper critique #2: Due W/F, February 1 and 3
- Weeks 6 11: The details of modeling
 - Modeling project #1: Due February 22 and 24
 - Modeling project #2: Due March 21 and 23
- Weeks 12 14: Large-scale modeling
 - Modeling project #3: Due April 9 16
- Final exam: no final exam for this course
- Grading: later reports worth more than early ones

To Computer Lab or Not?

- I struggled with this question
 - Decided on no computer lab sessions for the course
 - I hope that this works out for me...we'll see!
- I'll use some online resource during class
 - Students are free to bring laptops to class
- This is not a programming class
 - Not entirely true: there will be programming for modeling study #2
 - Also: students need to make their own plots

A book for a modeling course?

- Suggested textbooks to have:
 - Cravens: Physics of Solar System Plasmas, Cambridge, 1997.
 - Used in AOSS 370 (taken by all undergraduates in the class)
 - Gombosi: Physics of Space Environment, Cambridge, 1998.
 - Used in AOSS 574 (taken by all graduate students in the class)
- Neither is required, either is recommended
 - I list supplemental readings from these books as I present different types of space weather models
 - Hopefully the students will use these to augment in-class material as needed

CCMC Usage in this Course

- Not so much yet
 - We're still in the "learning how to conduct a study" stage
 - Students are still doing critiques of modeling papers
 - Lots of in-class discussions on good v bad modeling
 - Talking about the techniques of conducting a thorough study
 - Talking about the method of clearly writing up a study
 - Talking about the best practices for presenting a scientific study
- So far: "Intro to the CCMC" class sessions
 - Show and tell of how to navigate the CCMC website

Coming Up: February and March

- Details of CCMC models
 - Going "under the hood" with a model
 - One model per class session
 - Several aspects to this:
 - What region/phenomenon is being modeled by a code?
 - What equations are being solved by the code?
 - What numerical approach was used in the code?
 - What typical grids are used in the code?
 - What inputs does the code require?
 - What outputs does the code produce?
 - What are the ranges of I/O validity for the code?
 - What other codes are similar in region, equation, or numerics?
- Will use CCMC extensively for this, plus papers

Modeling Study #1

- Students will use CCMC to explore a region of space
 - Data only as input, just model results
 - Pick one model and get to know it
 - Read papers on the model to understand what others have done with it
 - Explore the range of input parameters
 - See what this does to the output
 - Could just use archival run results, but also instant/RoR jobs
 - Write a report and give a presentation on your findings
- Students can choose what code to use for this
 - But, they have to change for modeling studies #2 and #3

Modeling Study #2

- Write your own numerical model
 - Any formulaic "model" is acceptable
 - I will go over a bunch in class before assigning this project
 - Dst, CPCP, magnetopause, RB e- fluxes, etc.
 - Must write the code from scratch yourself
 - Must use a month of data to drive the model
 - Must use other data for output comparison
 - Dst predictor: data is obvious
 - Magnetopause predictor: GOES/LANL crossings
 - Write a report and give a presentation on your findings
- No direct CCMC involvement here

Modeling Study #3

- The biggy: putting it all together
 - Conduct a study that leads to a journal-style report
 - Data as input and output comparisons
 - Lots of literature review and interpretative discussion
 - Bigger report and longer presentation
- CCMC will be heavily used by some
 - Undergrads: almost certainly using a CCMC model
 - M-Eng students: definitely using a CCMC code
 - PhD students: maybe using their research project code
 - But maybe not, especially for non-numerical-oriented students

Summary: Please help!

- I am here to learn
 - Taught this class 4 years ago as a directed study
 - Moldwin taught it 2 years ago, also in ind. study mode
 - A "new" course for me, and I am teaching it a new way
- I am very receptive to suggestions
 - Any experiences you have had with this proposed course structure are welcome
- I am willing to share
 - Not yet, because I don't have very much developed