**User Feedback (Magnetospheric Models)** 

# Dayside Reconnection and the Solar-Wind Electric Field

Joe Borovsky<sup>1</sup>, Joachim Birn<sup>1</sup>, Michael Hesse<sup>2</sup>, and Masha Kuznetova<sup>2</sup>

1 Los Alamos National Laboratory 2 CCMC NASA/Goddard

FINDING: Contrary to standard wisdom, the solar-wind electric field does not control the rate of dayside reconnection.\*

\*This finding was made possible by the CCMC.

### Specific Comments about the CCMC

At the time of this project, Los Alamos lacked a global-simulation capability.

Joachim and Joe from Los Alamos teamed up with CCMC to accomplish this science

**CCMC** is fast and flexible.

As opposed to collaborations with global modelers:

**Suspicious** 

Busy

In need of funding

Without hands-on access to the simulation codes, the computer resources, and the analysis graphics, this project could not have been done by Joe and Joachim.

### **Motivation for the Project**

Develop an understanding and theoretical underpinning for the "plasmasphere effect" seen in satellite data.

When solar-wind/magnetosphere coupling is examined, the coupling is weaker when plasmaspheric drainage plumes are seen.



# The Importance of Dayside Reconnection

(1) Via dayside reconnection, some solar-wind plasma becomes magnetically connected to the magnetosphere-ionosphere system.

(2) Mostly via field-aligned currents, that magnetically connected solar-wind plasma transfers momentum and energy into the magnetosphere-ionosphere system.

(3) The more dayside reconnection, the more coupling.

(4) Whatever controls the dayside reconnection rate, largely controls solar-wind/magnetosphere coupling.



# Dayside Reconnection and the Solar-Wind Electric Field

Conventional wisdom has it that the upstream solar-wind electric field  $E_y = v_{sw}B_z$  controls the reconnection rate R at the dayside magnetopause.

```
Examples: solar-wind driver functions are based on vB<sub>z</sub>:
```

```
\begin{array}{ll} vB_z \\ vB_s \\ vB_\perp sin^2(\theta/2) \\ v^{4/3}B_\perp sin^2(\theta/2)P^{1/6} & Vasyliunas \\ vB^2 sin^4(\theta/2) & Akasofu \ \epsilon \\ v^{4/3}B_\perp^{2/3} sin^{8/3}(\theta/2) & Newell \end{array}
```

In some analyses, a "reconnection efficiency" factor  $\alpha$  is specifically added [e.g. Goertz et al., 1993], where  $R = \alpha v_{sw} B_z$ 

¿Is the conventional wisdom correct?

### The GEM Reconnection Challenge

A controlled reconnection problem was examined with several computer-simulation techniques:

- •Resistive MHD simulations (Otto, Birn)
- •Hall MHD simulations (Huba, Shay, Hesse, Birn)
- •Hybrid simulations (Shay, Kuznetsova)
- Particle-in-cell simulations (Hesse, Pritchett)

This challenge led to a fundamental understanding about what physical processes enable reconnection to proceed.

+The challenge also led to an understanding about how to modify MHD codes to get the correct reconnection rates.



### **Resistive-Spot MHD**

To get the correct reconnection rate in an MHD code you need a localized spot of resistivity at the reconnection site.

The resistivity in the spot must be strong enough (to fully break the frozen-in condition as plasma flows through the spot).

The spot must be several gridspacings large (so the resistivity in the MHD equations controls the reconnection, not numerical errors).



**BATSRUS** code at **CCMC** 

Use high-resolution dayside grid ( $1/16 R_E$ ).

Using resistive spot across dayside magetopause.

Run large range of solar-wind parameters.



01/01/2000 Time = 02:00:00 y=  $0.00R_{\rm s}$ 

### Testing the Global Simulations: The Local Reconnection Rate and the Cassak-Shay Formula

Cassak and Shay [2007] derived this two-plasma reconnection-rate formula:

 $R=0.1~2~B_1^{3/2}B_2^{3/2}$  /  $(B_14\pi\rho_2+B_24\pi\rho_2)^{1/2}(B_1+B_2)^{1/2}$   $\rightarrow$  0.1  $v_AB$  The formula has been well tested in controlled reconnection simulations.

Testing the reconnection rate measured in the CCMC resistive-spot global-simulation against the Cassak-Shay formula.

The reconnection rate in the code is correct!



## Testing Whether the Solar-Wind Electric Field Controls the Reconnection Rate

Q: Is  $R \propto E_{y \text{ sw}}$ ?



### Why Doesn't Solar-Wind Electric Field Control the Reconnection Rate?

The electric field  $E_v$  is  $v_x B_z$ 

The flow diverges around the magnetosphere, so v and B at the magnetopause both depend of the flow pattern of the wind around the magnetosphere.

Finding the tangential electric field on the boundary is a flow problem with boundary conditions.





### **High Versus Low Mach Number Flow**



#### So, What Controls the Dayside Reconnection Rate?

Using help from CCMC simulations, we derived a dayside-reconnection-control function from the Cassak-Shay formula.

$$R = 0.1 \ \pi^{-1/2} \sin(\theta/2) \ B_m^{1/2} \ B_s^{3/2} / \{ (B_m \rho_s + B_s \rho_m)^{1/2} \ (B_m + B_s)^{1/2} \}$$

$$B_m = (8\pi \rho_{sw})^{1/2} \ v_{sw} \quad \text{(from pressure balance)}$$

$$B_s = (8\pi \rho_{sw})^{1/2} \ v_{sw} \ (1 + \beta_s)^{-1/2} \quad \text{(from pressure balance)}$$

$$\rho_s = C \ \rho_{sw} \quad \text{(from Rankine-Hugoniot shock jump conditions)}$$

$$\begin{split} R &= 0.1 \; \pi^{\text{-}1/2} \rho_{sw} v_{sw}^{\quad 2} \; sin(\theta/2) \; / \; \{ [C \rho_{sw} + (1+\beta_s)^{\text{-}1/2} \rho_m] [(1+\beta_s)^{3/2} + (1+\beta_s)] \}^{1/2} \\ \beta_s &= 0.032 \; M_A^{1.92} \; \text{(beta of the magnetosheath: CCMC parameterization)} \\ C &= [2.44 \times 10^{\text{-}4} + (1+1.63 log_e(M_A))^{\text{-}6}]^{\text{-}1/6} \; \text{(compression ratio bow shock)} \\ M_A &= v_{sw} (4\pi \rho_{sw})^{1/2} / B_{sw} \quad \text{(Alfven Mach number of solar wind)} \end{split}$$

Note the strong Mach-number dependence in the formula. Note that vB does not appear anywhere in the formula.

### Testing the "Reconnection Control Function"

Correlation coefficients for the 1963-2003 OMNI2 data set (158,000 hours of data).

|                                                            | AE <sub>1</sub> | AU <sub>1</sub> | AL <sub>1</sub> | PCI  | MBI <sub>1</sub> | Кр   |
|------------------------------------------------------------|-----------------|-----------------|-----------------|------|------------------|------|
| Akasofu $\varepsilon = vB^{2} \sin^{4}(\theta/2)$          | 0.52            | 0.39            | 0.52            | 0.52 | 0.49             | 0.47 |
| Electric Field = -E <sub>v</sub>                           | 0.68            | 0.51            | 0.67            | 0.65 | 0.61             | 0.52 |
| $vB_{\perp}sin^{2}(\theta/2)$                              | 0.69            | 0.56            | 0.67            | 0.70 | 0.66             | 0.60 |
| Newell Function = $v B_{\perp}^{4/3} \sin^{2/3}(\theta/2)$ | 0.76            | 0.60            | 0.74            | 0.75 | 0.72             | 0.63 |
| Recon. Control Function                                    | 0.75            | 0.62            | 0.72            | 0.73 | 0.74             | 0.68 |

### Impact of This

| We have le | earned v | what controls | the   | dayside  | reconnection |
|------------|----------|---------------|-------|----------|--------------|
| rate: ram  | pressur  | e, Mach-numl  | oer ( | effects. |              |

- $\Box$  This allows us to make better predictions.
- ☐ This allows us to understand "the plasmasphere effect" wherein the magnetosphere exerts some control of solarwind/magnetosphere coupling.
- ☐ This provides a methodology to develop more-advanced physical pictures of solar-wind/magnetosphere coupling.

#### What Does This Tell Us?

- A) We have learned what controls the reconnection rate.
- B) It isn't the solar-wind electric field!
- C) But, geomagnetic activity still correlates with  $E_{\rm v}$ .
- This tells us that solar-wind/magnetosphere coupling is a two-step process:
  - 1) Reconnection connects the plasmas.
  - 2) The plasmas couple <u>after</u> they are connected.
- We suspect that the solar-wind electric field plays a role in step (2).
- We also have CCMC evidence that polar-cap saturation comes in during step (2).

#### The Future of this Collaboration

- 1) Reconnection
  - •Re-derive reconnection-control-formula
  - •Base new derivation on the "Birn formula"
  - •Use CCMC archives to parameterize fluid flow away from nose
- 2) Post-Reconnection Coupling
  - •Explore coupling physics with CCMC archives and new runs
  - Derive a coupling-physics driver function

Produce "dual" solar-wind driver function: Reconnection Rate + Strength of Coupling

### General Comments about the CCMC

- 1) Model selection is excellent
- 2) Turnaround is fast
- 3) Ease of web-based graphics is surprising
- 4) Help with the models has been great
  - Help with understanding the numerics
  - Interfacing with the code authors
- 5) Response to special requests has been great
  - Supplementary graphic capabilities added by Lutz
  - Special runs set up by Masha

### Acknowledgements

**Paul Cassak** 

**Mick Denton** 

**Benoit Lavraud** 

Mike Shay

**CCMC** 

**NSF National Space Weather Program** 

NASA LWS TR&T Program