

The Global Ionosphere Thermosphere Model and the Ridley Ionosphere Model (or GITM and RIM)

Aaron Ridley and the CSEM Crew

Spherical Magnetosphere

Global Ionosphere-Thermosphere Model

GITM solves for:

- 6 Neutral & 5 Ion Species
- **Neutral winds**
- Ion and Electron Velocities
- **Neutral, Ion and Electron Temperatures**

GITM Features:

- Solves in Altitude coordinates
- Can have non-hydrostatic solution
 - √ Coriolis
 - ✓ Vertical Ion Drag
 - ✓ Non-constant Gravity
 - ✓ Massive heating in auroral zone
- Runs in 1D and 3D
- Vertical winds for each major species with friction coefficients
- Non-steady state explicit chemistry
- Flexible grid resolution fully parallel
- Variety of high-latitude and Solar EUV drivers
- Fly satellites through model

GITM - 2

- Developed at the University of Michigan.
- First paper published 2006 (Ridley, Deng and Toth JASTP).
- Non-hydrostatic model, altitude grid, approximately 1/3 scale height resolution in the vertical. Lower boundary at 100 km.
- Block-based domain decomposition in the horizontal direction. Fully parallel. Flexible grid resolution – has been with resolutions from 20°x10° (lon x lat) to 2.5°x0.3125°. Runs on a laptop and a supercomputer (Have run on up to 256 PEs). Uses MPI. Written in Fortran-90. Ghostcells are used for vertical boundary conditions and message passing.
- Can run in 1D by turning nLons and nLats to 1.
- Runs on many different computers / operating systems.
 - Anything that the SWMF can run on.
- Uses a 4th order Rusanov scheme with an MC limiter for advective solver. Does vertical advection, then horizontal, then add sources.

Resolution

2 x 16 times the resolution!

GITM - 3

- GITM solves the Navier-Stokes equations on a sphere (with lots of source terms) for the neutrals. Can modify the number of primary constituents in the main module (ModEarth, ModMars, ModTitan -> ModPlanet). For Earth, these are N_2 , O_2 , O_3 , O_4 , O_5 , and O_4 .
- Each primary constituent has an individual vertical velocity, but a bulk horizontal velocity. Bulk vertical velocity is the mass density weighted average of the individual vertical velocities. Friction terms affect the individual velocities.
 - Gradient in partial pressure, gravity (varying), ion drag, Corriolis, geometry, and friction all affect the vertical wind.
- Bulk temperature driven by solar EUV, conduction, NO and O2 radiative cooling, Joule heating, and particle heating.
- Chemistry is done explicitly. There are no assumptions on steady-state.
 Subcyling is used to capture time-scales down to about 0.01 seconds.
- Molecular and Eddy diffusion treated specifically in the vertical momentum equation instead of the continuity equation.

Nonhydrostatic

GITM - 4

- Ionospheric velocities are assumed to be in stead-state.
 - Equations are different across field-lines and along field-lines.
- Electron and ion temperatures solved for.
 - Electron temperatures are very complicated. They are solved for implicitly with a large number of source and loss terms. Only vertical direction is considered in the electron temperature equation.
 - Ion temperature is a combination of electron and neutral temperatures.
- Magnetic field is from IGRF of the start date.
 - Recently implemented dipole, tilted dipole, and tilted-offset dipole
- Electric field is from a wide variety of sources (AMIE, Weimer, etc). As is the auroral precipitation pattern (Just added Newell's auroral model!)
- Code is initialized with MSIS and IRI, and allowed to evolve.
- MSIS typically drives lower boundary condition on neutrals, while the ions have a continuous gradient boundary conditions.
 - Student working on putting a plasmasphere model into the SWMF, so this (as well as the PWOM) would help with the upper BC).

Tides – MSIS Driven

Tides - GSWM Driven

Time Issues

- GITM is a relatively slow code, since it is completely explicit.
- Time step is around 3 seconds for 5°x2.5° (lon x lat) resolution.
 - Limited by the sound speed and the vertical grid size.
 - When running at 2.5°x1.25°, time step is reduced because of cells near the pole and strong ion flows.
- Typically run with 64 (9 cell x 9 cell) blocks (5°x2.5°) on 64 PEs.
- Runs one day in about 80 minutes (on 64 PEs).
- The code is pretty evenly split between horizontal advection, vertical advection and chemistry.
 - Could possibly speed code up by going to implicit chemistry in the lower themosphere, although we have recently tried this and it does not save too much time.
- This all being said, we have done 1 year simulations at 5°x2.5° resolution.

Equatorial Electrodynamics

Equatorial Electrodynamics - 2

Ridley Ionosphere Model (RIM)

- New Ionospheric Potential Solver
- Fully parallel latitude slices
- Forces potential to be the same between Northern and Southern hemisphere on closed field line, while polar caps are free.

RIM Description

- Parallel
 - Typically run with 1° latitude by 2.5° longitude resolution
 - Doesn't really help to run over about 8 processors
- Field Aligned Currents from
 - Global Magnetosphere Model (GM)
 - Inner Magnetosphere Model (IM)
 - Upper Atmosphere Model (UA)
- Calculates aurora using
 - Old method (based only on Jr)
 - Use MHD quantities that are passed to RCM (density and pressure)
 - Use RCM generated diffuse aurora
- Different regions
 - High latitude only (separate)
 - Low latitude only
 - Whole sphere
 - Solve across the equator (treating them separate)
 - Solve across the equator (with fold) force Earth potential to be zero!

New Aurora

Example – May 4, 1998

Global Plot

Electric Potential (kV)

Issue – It is clear that the equator plays an important role! Need to have proper field-line integrals (Not HEIGHT integrals!) and use a corresponding solver

Summary

- The Global Ionosphere Thermosphere Model is new
 - Nonhydrostatic, altitude coordinates
 - Navier-Stokes with lots of source terms
 - Can be run for different bodies
 - 1D and 3D with extremely flexible grid
 - Can use many different E-field and auroral models
 - Equatorial electrodynamics is work now, but with small issues
- The Ridley Ionosphere Model is also new
 - Folded potential solver, forces north and south potentials to be identical
 - Multiple auroral models
 - Multiple FAC sources
 - Need to add a capability for field-aligned integrals to be used

Questions?