

SWMF Magnetosphere

Gábor Tóth

Alex Glocer, Yingjuan Ma, Xing Meng, Dalal Najib, Yiqun Yu, Bart van der Holst, Tamas Gombosi Center for Space Environment Modeling University Of Michigan

Outline

- **™** Magnetospheric components of the SWMF
- **MHD** with non-isotropic pressure
- **M** Multi-ion MHD
- **M** Summary

Magnetospheric Components in the Space Weather Modeling Framework Space Weather Modelin Flare/CME **Upstream Observations Monitors SWMF Control & Infrastructure** Radiation Eruption Generator 0 Energetic Particles Polar Wind **Plasmasphere Belts** Inner/ leliosphere F10.7 Flux Gravity **Couplers** Waves **Thermosphere** Global Solar Corona & lonosphere Magnetosphere Inner 3D Outer **Magnetosphere** Heliosphere Ionospheric **Lower Corona** Electrodynamics **Atmosphere**

Radars Magnetometers In-situ

SWMF is freely available at http://csem.engin.umich.edu and via CCMC

Synoptic

Magnetograms

BATS-R-US

Block Adaptive Tree Solar-wind Roe Upwind Scheme

M Physics

- Classical, semi-relativistic and Hall MHD
- Multi-species, multi-fluid, anisotropic pressure
- Radiation hydrodynamics with multigroup diffusion
- Multi-material, non-ideal equation of state
- Solar wind turbulence

M Numerics

- Conservative finite-volume discretization
- Parallel block-adaptive grid
- Cartesian and generalized coordinates
- Splitting the magnetic field into B₀ + B₁
- Divergence B control: 8-wave, CT, projection, parabolic/hyperbolic
- Shock-capturing TVD schemes: Rusanov, HLLE, AW, Roe, HLLD
- Explicit, point-implicit, semi-implicit, fully implicit time stepping

M Applications

- Sun, heliosphere, magnetospheres, unmagnetized planets, moons, comets...
- **100,000+ lines of Fortran 90 code with MPI parallelization**

Anisotropic MHD

■ What is it?

Different pressures parallel and perpendicular to the magnetic field

■ Space physics applications

- Reconnection
- Magnetosphere
- Coupling with inner magnetosphere models (e.g. HEIDI, RAM, CRCM)
- Solar wind heating

M Difficulties

- New set of equations to solve
- Physical instabilities: fire-hose, mirror, proton cyclotron

M Combinations with more physics

- Separate electron pressure
- Hall MHD, semi-relativistic, multi-ion

Resistive MHD with electrons

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

Momentum:
$$\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u} + P p) + \mathbf{J} \otimes \mathbf{B} \mathbf{J} \times \mathbf{B}$$

$$\nabla \cdot (\rho \mathbf{u} \mathbf{u} + P p) = P \times \mathbf{B} \mathbf{J} \times \mathbf{B}$$

$$P = (p_{\perp} + p_{e})I + (p_{\parallel} - p_{\perp})\mathbf{b}\mathbf{b} \qquad p = \frac{2p_{\perp} + p_{\parallel}}{3}$$

$$\frac{\partial \mathbf{B}}{\partial t} + \nabla \times \mathbf{E} = 0$$

$$\frac{\partial \mathbf{B}}{\partial t} + \nabla \times \mathbf{E} = 0$$

$$\frac{\partial p_e}{\partial t} + \nabla \cdot (p_e \mathbf{u}) = (\gamma - 1) \left[-p_e \nabla \cdot \mathbf{u} + \eta \mathbf{J}^2 + \nabla \cdot (\kappa \mathbf{b} \mathbf{b} \cdot \nabla T_e) \right] + \frac{2}{\tau_{ie}} (p - p_e)$$

$$\mathbf{E} = -\mathbf{u} \times \mathbf{B} + \eta \mathbf{J}$$

$$\mathbf{b} = \mathbf{B}/B$$

$$\mathbf{J} = \nabla \times \mathbf{B}$$

Verification tests for anisotropic pressure

Sound wave propagating parallel to magnetic field at $\ c_s = \sqrt{3p_{\scriptscriptstyle \parallel}/
ho}$

Grid convergence for smooth problem:

Verification tests for anisotropic pressure

Circularly polarized Alfven wave propagating at $\,v_A=\sqrt{({f B}^2+p_{\scriptscriptstyle \perp}-p_{\scriptscriptstyle \parallel})/
ho}$

Limiting the Anisotropy

M Instabilities

$$\frac{p_{\parallel}}{p_{\perp}} > 1 + \frac{B^2}{p_{\perp}}$$

$$\frac{p_{\scriptscriptstyle \perp}}{p_{\scriptscriptstyle \parallel}} > 1 + \frac{B^2}{2p_{\scriptscriptstyle \perp}}$$

$$rac{p_{\perp}}{p_{\parallel}} > 1 + 0.847 \left(rac{B^2}{2p_{\parallel}}
ight)^{0.48}$$

In unstable regions we make the ion pressure isotropic

■ Ion-ion, ion-electron and/or wave-ion interactions:

 \odot Push ion pressure towards isotropic distribution with time rate τ

Preliminary Magnetosphere Run

Plans for Anisotropic MHD

- **™** Use energy equation to capture shocks
- **™** Combine anisotropic MHD with separate electron equation
- **M** Magnetospheric simulations
 - Comparison with data (e.g. Cluster, Wind)
- **™** Combine with Hall MHD for reconnection studies
 - GEM challenge
- **■** Apply to solar corona
- **™** Publish papers ...

Multi-Fluid MHD

- MEach fluid has separate densities, velocities and temperatures.
- Multi-Fluid MHD has many space physics applications
 - ionospheric outflow: coupling with PWOM
 - Earth magnetosphere
 - Martian ionosphere
 - Outer Heliosphere interaction with interstellar medium
- M Fluids are coupled by collisions, charge exchange and chemical reactions.
- M BATS-R-US now contains a general multi-fluid solver with arbitrary number of ion and neutral fluids.

Initial Results (Glocer et al, 2009, JGR)

M Modeling two magnetic storms

- May 4, 1998
- March 31, 2001

Multi-fluid BATS-R-US running in the SWMF coupled with

- Polar Wind Outflow Model
- Ridley Ionosphere-electrodynamics Model
- Rice Convection Model (inner magnetosphere)

™ Comparison with

- single fluid model
- global indexes (Dst, CPCP)
- in situ satellite measurements

O+/H+ Ratio for March 31 Storm

- Multi-Fluid vs. Multi-species
 - Similar near Earth
 - Different further away

Magnetic Field vs Goes 8 Satellite

Multi-fluid MHD with O⁺ outflow

Single-fluid MHD with no outflow

Velocities vs Cluster Satellite

Velocity Differences and Magnetic Field

O+ Escape from Mars Ionosphere

Summary

■ Added two-fluid (electron + ion) and anisotropic MHD to BATS-R-US.

- Initial verification tests pass
- Preliminary magnetosphere runs look reasonable/interesting
- Will be coupled with HEIDI, RAM, PWOM
- Will be applied to reconnection, solar wind

Multi-fluid MHD is fairly well tested and working

- Coupled with RCM and PWOM
- Mars ionosphere-solarwind interaction, in progress
- Earth magnetosphere (Glocer et al, 2009, JGR)
- Outer heliosphere (Opher et al, 2009, Nature)
- M New features are transferred to CCMC once they become robust

Resistive Hall MHD with electrons and anisotropic ion pressure

Mass conservation:
$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

Momentum:
$$\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u} + \mathbf{p}) + \mathbf{b} \mathbf{E} \mathbf{b} \mathbf{J} \mathbf{u} \times \mathbf{B} \mathbf{b}$$

$$P = (p_{\perp} + p_e)I + (p_{\parallel} - p_{\perp})\mathbf{b} \mathbf{b}$$

$$\frac{\partial \mathbf{B}}{\partial t} + \nabla \times \mathbf{E} = 0$$
Induction:
$$\mathbf{b} = \mathbf{B}/B$$

Pressure:
$$\frac{\partial p_{\perp}}{\partial t} + \frac{\partial \overline{p}}{\partial t} \cdot (p_{\overline{\mathbf{u}}} \mathbf{u}) = + \frac{2\eta e^2 n_e}{(M_i - 1)} (p_{\overline{\mathbf{u}}} - p_{\overline{\mathbf{u}}}) - p_{\overline{\mathbf{u}}} \frac{\partial p_{1}^2 n_e}{\partial t} p_{\overline{\mathbf{u}}} \frac{\mathbf{b} \cdot (\nabla \mathbf{u}) \cdot \mathbf{b}}{M_i} + \nabla \cdot (p_{\parallel} \mathbf{u}) = + \frac{2\eta e^2 n_e}{M_i} (p - p_e) - 2p_{\parallel} \mathbf{b} \cdot (\nabla \mathbf{u}) \cdot \mathbf{b}$$

Electron pressure:

$$\frac{\partial p_e}{\partial t} + \nabla \cdot (p_e \mathbf{u}_e) = (\gamma - 1) \left[(-p_e \nabla \cdot \mathbf{u}_e + \eta \mathbf{J}^2 + \frac{3\eta e^2 n_e}{M_i} (p - p_e) + \nabla \cdot (\kappa \mathbf{b} \mathbf{b} \cdot \nabla T_e) \right]$$

Electron velocity: $\mathbf{u}_e = \mathbf{u} - \frac{\mathbf{J}}{en}$

Electric field:
$$\mathbf{E} = -\mathbf{u} \times \mathbf{B} + \eta \mathbf{J} + \frac{\mathbf{J} \times \mathbf{B}}{en_e} - \frac{\nabla p_e}{en_e}$$

Current:
$$\mathbf{J} = \nabla \times \mathbf{B}$$

Multi-Ion MHD Derived

Momentum equations for electrons with charge -e and ion fluids s with charge q_s

$$\frac{\partial \rho_{s} \mathbf{u}_{s}}{\partial t} + \nabla \cdot (\rho_{s} \mathbf{u}_{s} \mathbf{u}_{s} + Ip_{s}) = +n_{s} q_{s} \left(\mathbf{E} + \mathbf{u}_{s} \times \mathbf{B} \right) + S_{\rho_{s} \mathbf{u}_{s}}$$

$$\frac{\partial \rho_{e} \mathbf{u}_{e}}{\partial t} + \nabla \cdot (\rho_{e} \mathbf{u}_{e} \mathbf{u}_{e} + Ip_{e}) = -n_{e} e \left(\mathbf{E} + \mathbf{u}_{e} \times \mathbf{B} \right) + S_{\rho_{e} \mathbf{u}_{e}}$$
The consideration field from electron momentum equation position position and

Express electric field from electron momentum equation peglecting small terms:

$$\mathbf{E} = -\mathbf{u}_e \times \mathbf{B} - \frac{1}{en_e} \nabla p_e + \eta \mathbf{J}$$

Obtain electron density from charge neutrality and electron velocity from current:

$$n_e = rac{1}{e} \sum_s n_s q_s$$

$$\mathbf{u}_e = -rac{\mathbf{J}}{en_e} + \mathbf{u}_+ \quad \text{where the charged averaged ion velocity is} \quad \mathbf{u}_+ = rac{\sum_s n_s q_s \mathbf{u}_s}{en_e}$$

The electron pressure p_e is either a fixed fraction of total ion pressure, or we solve

$$\frac{\partial p_e}{\partial t} + \nabla \cdot (p_e \mathbf{u}_e) = -(\gamma - 1) p_e \nabla \cdot \mathbf{u}_e + S_{p_e}$$

Multi-Ion MHD Equations

For each ion fluid s (neglecting resistive terms):

$$\begin{split} \frac{\partial \rho_s}{\partial t} + \nabla \cdot \left(\rho_s \mathbf{u}_s \right) &= S_{\rho_s} \\ \frac{\partial \rho_s \mathbf{u}_s}{\partial t} + \nabla \cdot \left(\rho_s \mathbf{u}_s \mathbf{u}_s + I p_s \right) &= \frac{n_s q_s}{n_e e} (\mathbf{J} \times \mathbf{B} - \nabla p_e) + n_s q_s \left(\mathbf{u}_s - \mathbf{u}_+ \right) \times \mathbf{B} + S_{\rho_s \mathbf{u}_s} \\ \frac{\partial p_s}{\partial t} + \nabla \cdot \left(p_s \mathbf{u}_s \right) &= - \left(\gamma - 1 \right) p_s \nabla \cdot \mathbf{u}_s + S_{p_s} \end{split}$$

Induction equation (neglecting Hall term):

$$\frac{\partial \mathbf{B}}{\partial t} - \nabla \times (\mathbf{u}_{+} \times \mathbf{B}) = 0$$

where the charge-averaged ion-velocity is $\mathbf{u}_+ = \frac{\sum_s n_s q_s \mathbf{u}_s}{e n_e}$

Two-Stream Instability

- Perpendicular ion velocities are coupled through the magnetic field
- **▶ Parallel ion velocities are not coupled by the multi-ion MHD equations.**
- Two-stream instability restricts the velocity differences parallel to B
 - We cannot resolve the two-stream instability
 - Use a simple ad-hoc friction source term in the momentum equations:

$$S_{\rho \mathbf{u}_s}^{friction} = \frac{1}{\tau_c} \sum_{q \neq s} \min(\rho_s, \rho_q) (\mathbf{u}_q - \mathbf{u}_s) \left(\frac{|\mathbf{u}_s - \mathbf{u}_q|}{u_c} \right)^{\alpha_c}$$

- Using the minimum of the two densities makes the friction uniformly effective in regions of low and high densities.
- \bullet τ_C is the time scale, ι_C is the cut-off velocity, α_C is the cut-off exponent
- Currently we use fixed parameters.
- We will explore physics based parameter setting and formulas in the future.

Multi-Ion MHD

For each ion fluid s (neglecting resistive terms):

$$\frac{\partial \rho_s}{\partial t} + \nabla \cdot (\rho_s \mathbf{u}_s) = S_{\rho_s}$$
Cannot be written in conservative form
$$\frac{\partial \rho_s \mathbf{u}_s}{\partial t} + \nabla \cdot (\rho_s \mathbf{u}_s \mathbf{u}_s + Ip_s) = \frac{n_s q_s}{n_e e} (\mathbf{J} \times \mathbf{B} - \nabla p_e) + n_s q_s (\mathbf{u}_s - \mathbf{u}_+) \times \mathbf{B} + S_{\rho_s \mathbf{u}_s}$$

$$\frac{\partial p_s}{\partial t} + \nabla \cdot (p_s \mathbf{u}_s) = -(\gamma - 1) p_s \nabla \cdot \mathbf{u}_s + S_{p_s}$$
Cannot be written in conservative form
$$\frac{\partial \rho_s \mathbf{u}_s}{\partial t} + \nabla \cdot (p_s \mathbf{u}_s) = -(\gamma - 1) p_s \nabla \cdot \mathbf{u}_s + S_{p_s}$$

We can also solve for *kinetic* energy density $e_s = \rho_s \mathbf{u}_s^2/2 + p_s/(\gamma - 1)$

$$\frac{\partial e_s}{\partial t} + \nabla \cdot \left[(e_s + p_s) \mathbf{u}_s \right] = \mathbf{u}_s \cdot \left[\frac{n_s q_s}{n_e e} (\mathbf{J} \times \mathbf{B} - \nabla p_e) + n_s q_s (\mathbf{u}_s - \mathbf{u}_+) \times \mathbf{B} \right] + S_{e_s}$$

Finally the induction equation with or without the Hall term becomes

$$\frac{\partial \mathbf{B}}{\partial t} - \nabla \times (\mathbf{u_e} \times \mathbf{B}) = 0$$
 or $\frac{\partial \mathbf{B}}{\partial t} - \nabla \times (\mathbf{u_+} \times \mathbf{B}) = 0$

Conservation

- Multi-ion MHD equations cannot be written in conservation form.
- M We would still like to maintain conservation for total ion fluid.
- M Scheme:
 - Solve for total ion fluid and individual ion and neutral fluids.
 - Use conservative scheme for total ion fluid, and non-conservative (there is no other choice) for the individual ion fluids.
 - Distribute total mass, pressure, and momentum (if all ions move the same direction) among the ion fluids proportionally to the individual solutions, e.g.:

$$p_s^{n+1} = p_s^* \frac{p^{n+1}}{\sum_q p_q^*}$$

For ion momentum components with mixed signs we do the opposite:

$$(\rho \mathbf{u})^{n+1} = \sum_{s} (\rho_s \mathbf{u}_s)^*$$

Positivity

- M Positivity is difficult to maintain in empty regions where some of the fluids do not occur.
- In some problems we can identify effectively single-ion regions based on geometry and/or physical state.
 - For example the solar wind has high Mach number.
- M In other problems we have to check after every time step if any of the fluids have very small density or pressure relative to the total. ■
- M For minor fluids
 - Density is set to a small fraction (~10⁻⁴) of the total ion density.
 - Velocity and temperature are set to the same as for the total ion fluid.
 - This is a physically meaningful state that can interact properly with the truly multifluid regions.

Stability

- **M** Equations can either be solved with the fully implicit scheme.
- M Or we can use an explicit scheme with point-implicit source terms:

$$(\rho_s \mathbf{u}_s)^{n+1} = (\rho_s \mathbf{u}_s)^n - \Delta t \nabla \cdot \mathbf{F}^n + \Delta t S_{\rho \mathbf{u}_s}^{n+1}$$

$$+ \Delta t \left[\frac{q_s}{M_s} \left(\rho_s \mathbf{u}_s - \rho_s \mathbf{u}_+ \right)^{n+1} \times \mathbf{B}^n + \frac{n_s^n q_s}{n_e^n e} (\mathbf{J}^n \times \mathbf{B}^n - \nabla p_e^n) \right]$$

where M_S is the mass of ion s.

- The linear equations can be solved in every grid cell independently.
- The unknowns are the momenta of the ion fluids.
- The three spatial components are coupled by the artificial friction term.
- We use an analytic Jacobian matrix for sake of efficiency and accuracy.