Active Region Evolution

An LWS TR&T Strategic Capability Model

Peter MacNeice

CCMC Workshop

Arecibo, Puerto Rico November 6, 2007

Objective

- To develop a community model to aid in understanding the structure and modeling the slow evolution of solar active regions
 - Focus is still very much on the coronal field topology
 - Not a model of explosive events!
- Why now? Convergence of 3 factors
 - New vector magnetogram data sources
 - Maturity of models at least for upper chromosphere thru corona!
 - Better computers

NRA Essential Features

- Use vector magnetic fields
- Find physically consistent flow/fields from vector magnetograms for time dependent (quasi-steady) magnetic field evolution, including flux emergence/cancellation and apparent shearing motions
- Determine the 3D vector magnetic field and electric currents of a complex active region over as large a scale as possible
- Include the capability to interface with global coronal-heliospheric field models
- Provide user friendly interfaces and GUI for runs on demand by the general research community, including capability for zooming in on small portions of a simulation domain, and ability to analyze magnetic topology
- Provide the flexibility for quick turn-around runs
- Working version to be delivered to CCMC within 3 years; final production version delivered within 5 years.

NRA Desirable Features

- Include the ability to incorporate, as input, magnetic field observations from different heights in the solar atmosphere
- Include the ability to incorporate as input, photospheric velocity field data (?)
- Include the ability to incorporate as input coronal imaging data
- Allow for a variety of user-selectable field determination methods ie multiple models

A Break With The Past

- Current community models use synoptic magnetograms static
- Before Model character <u>defined by</u> data limitations
- Now model character <u>dictates</u> the magnetogram spatial and temporal resolution
- General Requirement: Need to be able to provide vector **B** at any surface point and any time during the run.

Critical Elements

Quality of model coronal fields critically dependent on two elements

- 1. The quality of the magnetogram and surface flow inputs
 - Magnetogram synthesis
- 2. How these inputs imprint themselves on the upper chromosphere
 - Nobody really knows So we have kept this element of our design as modular and flexible as possible
 - The bleeding edge is RADMHD(Abbett 2007) Is it mature and robust enough for community modeling in the next 5 years?
 - My bet is semi-empirical models of this layer will give best results for many years
 - I anticipate this being one of the main science questions that this model's users will address
 - Could bypass this constraint by using chromospheric magnetograms
 - My bet is good chromospheric vector magnetogram data will arrive before 'useable' physics based models of the photosphere/upper chromosphere connection

Design

- Modular
- 8 components
 - AR database Tool
 - Grid Generation Tool
 - Global Magnetogram Generation Tool
 - Surface solution Consistency Tool
 - NLFFF and NLNFFF codes
 - 3D adaptively refining MHD code
 - Field Topology analyser
 - GUI
- Very compact team (10 people)
 - Not a CCMC funded effort!
 - Personnel from Drexel, NRL, MaxPlanck, UMBC, NASA

Design (contd)

- MHD model should be global
 - Will use AMR on unstructured grid
 - Will use NLFFF and NLNFFF solutions as pre-conditioner
 - Will migrate from explicit to implicit algorithm
- Use DAVE to determine driving surface flows for MHD
 - Unique property that data uncertainty can be factored into the BC analysis
- Use Kameleon for file formatting
 - Each component will have a write routine casting its data in Kameleon format
 - Each will use a general Kameleon read routine
 - More about this on Thursday.

Principal Deliverables

- Fully functional beta package delivered by end of year 3
- Optimized package delivered by end of year 5
- In addition we have a number of annual deliverables in the SOW including hosting community testing workshops

Force-Free Models

- NLFFF and NLNFFF models of Wiegelmann
- NLFFF Implements Wheatland's minimization technique

$$I = \alpha \nabla \cdot B + \beta J \times B$$

NLNFFF minimizes

$$I = \alpha \nabla \cdot B + \beta (J \times B - \nabla p + \rho g)$$

- NLNFFF departures from force-free driven by coronal imaging analysis
- Proven capability NLFFF selected for use in data processing for SDO
- Principal developments
 - test spherical coordinate version
 - Implement unstructured grid version
 - Add v.grad v term to integrand

MHD Model

- 3D Global Finite Volume MHD Spicer (2007)
- Unstructured Grid with AMR
 - vital because of requirement to refine at a spherical inner boundary
- Equations solved in conservative cartesian form
- High Order Godonov (2nd order time and space)
 - may even support a Godonov based force-free algorithm
- div $\mathbf{B} = 0$ to round-off
- Both radial boundaries can be treated as separate 2D computational domains
 - eg easy to compute 2D surface advection of flux
- Anisotropic thermal conduction, optically thin radiation in testing
- Parallel
- Currently explicit developing implicit version for fast turnaround runs

Magnetogram Synthesis Tool

- This is a model (or class of models) in its own right
 - Combine data from multiple sources LOS and vector, full disk and limited fov, high and low cadences
 - Basically an (x,t) interpolation problem on a spherical surface
 - Apply appropriate physical constraints
 - Eliminate monopoles
 - Avoid spurious current densities at joins

Magnetogram Synthesis Tool (contd)

- To generate surface flows which are statistically consistent with the magnetogram data and induction equation for MHD solver
 - Using DAVE (Differential Affine Velocity Estimator - Schuck 2006)
 - Extension of LCT
 - Permits image data to expand, contract and rotate from frame to frame
 - Minimizes deviations from induction equation while allowing for noise in the data
 - Can switch to tracking temperature proxies where field data is too weak to use
 - Very fast (200 seconds for a 1024x1024 LOS image)

Magnetogram Synthesis Tool (contd)

- Such a compelling idea, we expanded the idea for AISRP also selected (with funding reduced because of overlap)
- LWS proposal described a tool specifically designed for this AR model
- AISRP version is much more general
- Two distinct processing layers
 - Lightweight pulldown menu, commonly needed simple processing ie monopole subtraction, basic current reduction at joins etc
 - Heavyweight an interface to support calling any 3rd party model to process the data
 - eg how would you want to combine photospheric and chromospheric magnetograms with perhaps constraint from other image sources?
- More info on this in Thursday's session

Surface Consistency Tool The photosphere/corona connection

- Anticipate that this will eventually be a 3D model in its own right.
- Responsible for generating inner radial boundary conditions for NLFFF, NLNFFF and MHD codes.

For NLFFF

- Photosphere is not force-free
- Modify the more uncertain transverse component of vector fields to enforce force-free condition
- Add chromospheric H α fibril info in pre-processing helps further minimize div B and $j \times B$
- Add chromospheric LOS magnetogram to supplement $H\alpha$ fibril info

Surface Consistency Tool

For MHD

- Zeroth order do nothing apply photospheric fields+flows as though at the base of the corona
 - More realistic for lower resolution data
 - For higher resolution data may have to dumb down resolution
- Pre-conditioning with NLNFFF need some model of shear flows in thin layer of NLNFFF to avoid model inconsistencies
- After that? Keeping our options open!
 - Canopy type models ?
 - Schrijver and Title type model?
 - Magnetic charge topology models?

Status

- Had kick-off meeting at Goddard last week
- Plan to have Version 0.1 of DAVE, NLFFF and MHD codes in SubVersion repository by end of November
- Upgraded DAVE to use vector data now in testing
- NLFFF
 - Tested with 5 different vector magnetogram sources
 - Testing spherical grid version for both local and global runs
 - Yin-Yang grid to minimize polar numerical stability constraint
 - Working on first AR time series Thalmann, Fall AGU
- MHD code
 - adding anisotropic conduction for physically motivated solar wind guided by extensive experience with our 2.5D code
 - Optimizing parallel grid generator

Milestones

First major milestone overdue

Haven't yet come up with a snappy acronym!

Thank You

