ENLIL at the CCMC

Dusan Odstrcil

University of Colorado/CIRES & NOAA/Space Weather Prediction Center

in collaboration with:

Nick Arge, Bernie Jackson, Paul Hick, Steve Ledvina, Christina Lee, Jon Linker, Yang Liu, Janet Luhmann, James Mc Collough, Matt Owens, Peter MacNeice, Vic Pizzo, Pete Riley, Xuepu Zhao

ENLIL - Sumerian God of the Wind

Versions at CCMC

1.0	+ WSA
(2.0)	+ MAS, quick plots
2.3a	+ Cone model, additional metadata
(2.4)	+ IMF for SEP, updated file structure
(2.5)	+ IPS/SMEI, updated quick plots, STEREO support

Near Solar Minimum

Calibration of Input Data for ENLIL Runs

Solar wind expands: parameters at Earth depends on the coronal temperature, ratio of specific heats, and on initial speed.

- Fast-stream solar wind proton number density (D_{fast} = 300 cm⁻³)
- Fast-stream solar wind mean temperature (T_{fast} = 1 MK)
- Ratio of specific heats ($\gamma = 1.5$)
- Ratio of alpha particles ($\alpha = 0$)
- Momentum flux balance: NV^X (x = 2)
- Pressure balance (P_{the} = const)

Boundary Conditions – bnd.nc

- Primary variables are shown at the inner boundary, latitudinal and longitudinal cuts intersecting the central meridian, and temporal evolution.
- Characteristic speed (red line) must be lower than the outflow speed.
- Grid spacing info is included at bottom.

3-D Values at Time Level – tim.****.nc

- Values are shown on various slices passing through Earth.
- Current sheet is shown by white line.
- Planet positions are shown by black spheres.
- Calendar data and physical time correspond to file record number (****).

Evolution at Geospace Positions – evg.nc

- Values are stored at Earth position (thick black line) and nearby grid points (light blue lines).
- Observations from NASA-OMNIweb are shown by red dots.
- Viewing evolution at nearby points can reveal effect of numerical resolution and can provide inclination of structures for geospace models

May 12, 1997 Halo CME

Running difference images fitted by the cone model

Verification of Cone Models

Launching of ICME

In-Situ Detection

- Halo ICMEs with circular or elliptical cross-section would have similar parameters at Earth
- Multi-point observations are needed
- Suggested future STEREO observations

Application of the CME Cone Model

The heliospheric simulations may provide a global context of transient disturbances within a co-rotating, structured solar wind and they can serve as an intermediate solution until more sophisticated CME models become available.

Multiple Events Challenge

http://cdaw.gsfc.nasa.gov/CME_list/

- 5 halo CMEs between April 27 and May 2, 1998
- 18 CMEs between April 27 and May 2, 1998

Connectivity of Magnetic Field Line

Plasma Cloud with Flux-Rope Geometry

Energetic Particles & Radio Emission

Global view

Detailed view

Important effect occurs away from the Sun-Earth line

Enhanced shock interaction together with quasiperpendicular propagation relative to IMF lines favors particle acceleration and generation of radio emission

Shock Detection Challenge

Tracing Nearby IMF Lines

Four additional four IMF lines are traced from geospace, offset +/- 2⁰ in latitude and longitude from the Earth location

Using 3-D Data

Geometrically fitted parameters:

- shock inclination
- shock speed

Together with the pre-shock solar wind parameters, these enable application of the Rankine-Hugoniot formulae to determine shock jump conditions

Predictions Driven by In-Situ Observations

- Heliospheric computations can be driven by accurate in-situ observations of solar wind parameters
- This approach can be strictly applied only during times of radial alignment, and potentially important 3-D interactions are not accounted for

Prediction of the solar wind flow velocity (left) and proton number density (right) at Ulysses. Red dots show observations by Ulysses and a solid line shows results from 1-D MHD simulations driven by values observed at Earth.

Utilization of IPS and SMEI Observations

Numerical 3-D MHD model requires reconstruction of the density and velocity across the whole inner boundary and specification of the temperature and magnetic field

- Distribution of solar wind density (left) and velocity (right) at 35 Rs as extracted from the heliospheric tomography model.
- Black areas show missing values and white areas show values out of range

UCSD/IPS-Kinematic & UCSD/IPS-ENLIL

Fine Resolution of Interplanetary Shocks at Geospace by Nested Grids

Shock Interaction with Magnetosphere

Driving OpenGGCM (Raeder and Kaghashvili) by ENLIL with nested grids

CME-1: 2005-01-24T18:18, S05W90, Φ =100°, V=700 km/s CME-2: 2005-01-25T08:42, S05W80, Φ =120°, V=1000 km/s

Plans for the Future

- Improved web interface and documentations
- Example run with default parameters
- Compatible metadata; VxO?
- User-provided plug-ins?
- Improved STEREO support
- IPS/SMEI tomography data
- Coupling with SEP model
- Improved numerical resolution and robustness
- Coupling with improved MAS model
- Coupling with geospace models