Bow shock behaviors under low MA SW.
Geotall observations and global simulations

or

Our impression on CCMC from the first experience
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The background

Masaki Fujimoto: local simulations (particle and fluid), spacecraft data
analysis focusing mainly on kinetic aspects of plasma physics

Masaki N Nishino: spacecraft data analysis (“THE Geotail specialist”)
with main interest on boundary layer/plasma transport

The Japanese magnetospheric community:
Two groups working on global MHD simulations

As we were convinced that coupling simulation results with
the curious observations under low density SW should make
the story most exciting.

Indeed we have tried to work with one of them, but ...



Low-density SW: First report

Gosling et al. (1982)

» sub-Alfvénic solar wind seen by
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Fig. 7. Solar wind density (top) and magnetosheath ion density
(N ), temperature (T,), flow speed (V,), and field strength on November
22, and 23, 1979. The units of N, T,, V, and B arecm ™3, °k, kms™ %,
and nT, respectively. Major gaps in the magnetosheath data corre-
spond to ISEE 2 transits into the magnetosphere. The horizontal
dashed line in the upper panel separates super-Alfvénic and
sub-Alfvénic solar wind flow.



The famous event in the last solar-cycle: May 11-12 1999
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Statistics of low-density SW

Low occurrence ratio
Relation to the sunspot number
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Fig. 3. Yearly sunspot numbers and annual occurrence rates of low-
density solar wind (density 0.5 cm™? or less).
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Low density = low sonic Mach number
Unusual BS location

Lunar Prospector 5/11/99
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Low-density

= low Alfven Mach number

Chance for
more magnetic effects
to be visible!

e Lavraud et al. GRL (2007)
o Cluster observation
— jet in the magnetosheath
— near the magnetopause
— under low-density solar wind
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Mechanism revealed by CCMC simulations

e Lavraud et al. GRL (2007)
— global MHD simulation
e acceleration mechanism
— magnetic tension force
— magnetic pressure gradient
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A more extreme case can be of more fun

a slow-mode BS

(Hundhausen et al. 1987)

* reverse curvature of the BS ?
— under radial IMF
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a. Spatial Configuration of a "Fast" Bow Shock

(B) sub-Alfvénic case
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b. Proposed Spatial Configuration of a "Slow" Bow Shock



GT observations:
An equally curious feature
detected
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What occurs at the bow shock

« flow deflection
— duskward flow in the magnetosheath on the dawnside

Flow deflection at the bow shock sunward

solar wind flow

duskward

Bu (IMF) The Parker spiral

Bow shock

v ¢/
,/Yy

Bd

magnetosheath flow

not simple gas dynamics but magnetic field-dominated dynamics



Should be nice to demonstrate it
by global MHD simulations
beyond the simple local argument

 We had worked for years with a global simulationist in Japan but

- Curious but rare: not truly exciting for a space-weather oriented person

- Demanding: requires dedicated works such as survey over parameter
space and fine-tuning of simulation setting

« After all, we could not reach a publishable level.

 Then Nishino, after reading Lavraud et al GRLO7 paper, happen to
realize that handling this issue via CCMC can be worth giving a try.

» We still had the concern that it may be too demanding but we decided
to give it a try.



Learn by experience:

the first run with a normal SW condition MA=5.4

« SW conditions
— normal SW parameters
— Parker spiral IMF
— MA=5.4

. output

— quasi-symmetric MSH in

shape
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Approaching: slightly low MA=3.2
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The target case MA=1.4

 upstream conditions (low MA, Parker spiral)
— B=(-10, 10, 0) nT, |B|=14.14 nT, Clock Angle: 90.0 deg
— Tsw=10eV
— Nsw=1cm=3
— Vsw=(-432, 0, 0) km/s
— MA=1.4, beta=0.02 ... magnetic field dominated SW
e size of simulation box
— X=+100, -682 Re
— Y, Z=%284 Re



* thickening of the
magnetosheath

e unusual BS location

» flow deflection at the BS

— duskward flows in the
magnetosheath under
Parker spiral IMF

e dawn-dusk asymmetry of
the magnetosphere in
shape
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1-D cuts in the X direction (Z=0) Y
Vsw = (-432, 0, 0) km/s, Bsw=(-10, 10, 0) nT \\;
Y

1-D cuts N=1/cc, MA=1.4
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Re-setting the grids

The artificial discontinuity in the MSH is due to the border
across which the grid size changes (0.25/0.5 Re).

This is not problem for a normal case but is a problem in this
case where the bow shock is located much farther upstream.

We asked the CCMC staffs to change locations of
the border of the grid size as well as the grid size itself.

Request for such a demanding run was accepted simply
via exchange of a few email messages!



before and after
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before and after
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Finally: Real synergy between obs and sim
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Dawn-dusk asymmetry at X=-30 Re

Density
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Summary

 Hearty thanks to the CCMC staffs!

e« Synergy between observations and (global) simulations is
Important and can be rather easy via CCMC

- It is not just a reporduction of observations



This is exactly what we have been doing
with local simulations, but CCMC enables
us to do the same with global simulations.



Summary

 Hearty thanks to the CCMC staffs!

« Synergy between observations and (global) simulations is important
and can be rather easy via CCMC

- It is not just a reporduction of observations

ldeas at ISAS space plasma group for utilizing the power of CCMC
 More on the magnetosphere under low MA SW
Geotail/Cluster/THEMIS studies

(tail-structure before substorm onset, BBF-dipolarization relationship, ...)

» Heliosphere simulation coupled with
Hinode-VEX-Geotail/ ACE/STEREO-MEX data study

» Heliosphere simulation coupled with ground-based observations of
Mercury’s sodium atmosphere

* Mercury magnetosphere
(science preparation for the BepiColombo mission)
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