Air Force Weather Agency

Integrity - Service - Excellence

Innovative ideas for CCMC to help AFWA

Lt Col Trey Cade Chief, Applied Technology Division Air Force Weather Agency

U.S. AIR FORCE

Overview

Data Standards

Data Assimilation needs and ideas

Model confidence measures

Space weather ensemble modeling

Data Standards

 DoD is developing Joint Meteorological/ Oceanographic (METOC) database standards

Consider collaboration with this effort

Data Assimilation

- Data assimilation studies could serve many purposes
 - Studies aimed at basic assimilative model development
 - Studies assessing the relative impact of adding a new data source to an existing model
 - Studies to support strategic instrument sensing

Data AssimilationSensing Sensitivity Studies

- Assimilation studies can assist in:
 - Quantifying relative impact of measurements
 - Determining where to place limited sensing assets
 - Determining which data sources are most important
 - Advocacy for both sensing and modeling

Example:

 Use studies to target select sites for upgrade

Data Assimilation New Sensor Support

- Federal agencies must be convinced that a new sensor is required
- Assimilation studies can assist in
 - Determining which types of data are most important
 - Prioritizing expenditures of limited financial resources

Example:

- Is RO data more important than expanding an ionosonde network?
- What is justification for NPOESS SESS sensors?

Model Confidence

- The DoD is becoming more interested in an assessment of confidence with each predicted environmental impact
- Key to assessing confidence on system impacts is to assess confidence in model output
 - Short term approach will cobble information from model V&V, data quality assessments and 'poor man' ensembles
 - Long term approach needs to target ensemble modeling; output becomes a true probability density function instead of a solution
- In meteorological modeling, the <u>only</u> way to truly quantify confidence is with ensemble modeling

Model Confidence Short Term

- Complete Model V&V is critical to fully document model regime strengths and weakness
 - Can be used to assess basic confidence in a specific model run
- Studies to assess model performance by data type
 - Provides confidence when data types are not available or are degraded for runs

- Studies of value added to 'poor man' ensembles
 - Running multiple versions of currently available models to assess rough model spread (e.g. runs of MSFM and BATSRUS or USU GAIM and USC GAIM)
 - Altering input data (e.g. initialize HAF from potential sheet and current sheet)

Ensemble Forecasting

Deterministic Forecasting

- Ignores forecast uncertainty
- Potentially very misleading
- Oversells forecast capability

Ensemble Forecasting

Yields probabilistic information

Enables optimal decision making

Encompassing Forecast Uncertainty

An analysis produced to run a model is somewhere in a cloud of likely states.

Any point in the cloud is equally likely

to be the truth.

Encompassing Forecast Uncertainty

Consensus & Confidence Plot

- Consensus (isopleths): shows "best guess" forecast (ensemble mean or median)
- Model Confidence (shaded)

Probability Plot

- Probability of occurrence of any weather variable/threshold (i.e., sfc wnds > 25 kt)
- Can be tailored to critical sensitivities, or interactive (as in IGRADS on JAAWIN)

Bridging the Gap

Binary Decisions/Actions

Using PDFs and System Thresholds

Probabilistic Decision Aids — a tool for Operational Risk Management (**ORM**)

Method #1: Decision Theory

- Minimize operating cost (or maximize effectiveness) in the long run by taking action based on an optimal threshold of probability, rather than an event threshold.
 - What is the cost of taking action?
 - What is the loss if...
 - the event occurs and without protection?
 - opportunity was missed since action was not taken?
- Good for well defined, commonly occurring events

Example (Hypothetical)

Event	vent: Damage to			Deterministic	Observation	Cost	Probabilistic	Cost (\$K) by Threshold for Protective Action						
			Case	Forecast (kt)	(kt)	(\$K)	Forecast	0%	15%	30%	60%	75%	90%	100%
parked aircraft		1	65	54	150	42%	150	150	150	1000	1000	1000	1000	
Threshold: sfc wind > 50kt			2	58	63	150	71%	150	150	150	150	1000	1000	1000
Cost (of protecting): \$150K			3	73	57	150	95%	150	150	150	150	150	150	1000
			4	55	37	150	13%	150	0	0	0	0	0	0
Loss (if damaged): \$1M			5	39	31	0	3%	150	0	0	0	0	0	0
Forecast?			6	31	55	1000	28%	150	150	1000	1000	1000	1000	1000
	YES	NO	7	62	71	150	85%	150	150	150	150	150	1000	1000
Observed?	Hit	Miss	8	53	42	150	11%	150	0	0	0	0	0	0
	\$150K	Correct Rejection	9	21	27	0	51%	150	150	150	0	0	0	0
	False Alarm		10	52	39	150	77%	150	150	150	150	150	0	0
	Alarm \$150K			Tot	tal Cost (\$M):	2.1		1.5	1.1	1.9	2.6	3.5	4.2	5.0

Optimal Threshold = 15%

Method #2: Customer Determines Level of Risk

- Stoplight color based on
 - 1) Ensemble forecast probability distribution
 - 2) System operating thresholds
 - 3) Customer-determined level of acceptable risk

The Deterministic Pitfall

Notion	Reality					
The deterministic atmosphere should be modeled deterministically.	Need for stochastic forecasting is a result of the sensitivity to initial conditions.					
A high resolution forecast is better.	A better looking simulation is not necessarily a better forecast. (precision ≠ accuracy)					
A single solution is easier for interpretation and forecasting.	Misleading and incomplete view of the future state of the atmosphere.					
The customer needs a single forecast to make a decision.	Poor support to the customer since in many cases, a reliable Y/N forecast is not possible.					
A single solution is more affordable to process.	Good argument in the past, but maybe not anymore.					
NWP was designed deterministically.	Yes and no. NWP founders designed model for deterministic use, but knew the limitation					
There are many spectacular success stories of deterministic forecasting	Result of forecast situation with low uncertainty, or dumb luck of random sampling					

Summary

- Space environmental modeling is more than just building models
- Data assimilation studies are critical to model development and sensing strategies
- Confidence assessments are going to be a critical output of all environmental model runs
- AFWA is committed to a future of ensemble modeling to capture and exploit forecast uncertainty