Data and visualization standardization

- Simulation data have many different grid structures:
 - equidistant cartesian grid
 - stretched cartesian grid (UCLA-MHD, Birn/Hesse MHD)
 - equidistant spherical grids (SH codes, ionosphere/thermosphere codes)
 - non-equidistant spherical (SH codes, CTIM, TIME-GCM, TDIM, LFM magnetosphere)
 - completely irregular (LFM magnetosphere, GSFC FEM magnetosphere)
 - oct-trees (Michigan code)
 - patch hierarchies (more general adaptive mesh codes)

-

- Container libraries (HDF, CDF, NetCDF,) do not solve the problem of making data with different structures compatible. They merely provide a means of packaging and machine independence.
- In principle any data set could be handled as "unstructured", i.e., full position information comes along with the data. Few viz packages can handle this. File size overhead is about a factor 1.5-5, but viz computation overhead can be 1-2 orders of magnitude: thus generally impractical.
- Interpolating data onto simpler grids with a uniform grid structure is possible, but beware:
 - There is generally a loss of information, but not necessarily so if the interpolated grid is fully contained in the original.
 - File size and memory requirements increase dramatically.

- May nonetheless be useful for a number of applications
- **Proposal:** Two universal *interpolated* formats:
 - * stretched cartesian (fits some SH codes, mag codes): reasonable compromise between file size and accuracy, is understood by most viz programs.
 - * spherical grid, uniform in ϕ and θ but stretched in R (fits most SH and IO/TH codes)
 - * keep the actual file format simple (no libraries), simply byte streams of pre-described order. Most viz packages do it this way for their internal formats (AVS, IBM/DX)

What can be standardized?

• File namespace:

for example:

model.MODEL.RUN.COORD.WHAT.TIME

MODEL: batsrus/tdim/.....

RUN: a run identifier: abc12345

COORD: coordinates: GEI/GSM/GSE/SM/...

WHAT: which parameters: bxgse

TIME: time encoding: 1996:11:24:22:30:00.00

or time since start in seconds: 00014800

Parameter namespace and units:

for example:

bxgse: magnetic field B_x component in units of nT

btot: total magnetic field in units of nT

press: plasma pressure in units of pPa

 $_{\rm Me}$: plasma number density in units of cm $^{-3}$ $_{\rm Ne}$: ionospheric electron density in units of cm $^{-3}$

 Standardization process could follow the WWW/IETF model: proposals are published on the web and iterated until they become "accepted standard practice"

- There could be some agreement on the use of certain visualization package(s). How to choose?
- Requirements:
 - should support many grid structures
 - should be widely available for many platforms
 - should support hardware accelerated rendering
 - should support scripting for non-interactive and web (background) application
 - should have rich features (cut planes, isosurfaces, flow lines,)

- should be able to produce publication quality output
- should be extendible (which implies a modular structure and/or open source)
- should be, if possible, open source software
- Of the many packages that are in use for scientific visualization IBM Data Explorer (IBM/DX, www.opendx.org) probably stands out. It has all the required features and it is open source (free, that is).