- Richard Fisher Living With a Star (Plenary)
- Michael Hesse Model Selection Issues (Plenary)

Operational Issues

- Stephen Quigley USAF Research-to-Operations
- Ariel Acebal USAF Operations
- Terry Onsager NOAA Operations

Highest Priority Operational Needs (Not in Priority Order)

- Geomagnetic A, K, and Probability forecasts
- Solar Proton Event forecasts
- Auroral electrojet map, location and intensity (real-time and future)
- Magnetopause crossing forecasts based on L1 data
- Energetic electron prediction (timing, fluxes, fluences, and spectra)
- Routine numerical guidance for all forecast quantities (e.g., climatological forecasts of flares, geomagnetic indices and probabilities, and F10.7)
- Real-time quality diagnostics of products

High Priority Operational Needs (Not in Priority Order)

- Short-term (days) F10.7 forecasts
- Ionospheric maps of TEC and scintillation (real-time and future)
- Geomagnetic storm end-time forecast
- Short-term (days) X-ray flare forecasts
- Geomagnetic activity predictions (2-5 days) based on CME observations
- Geomagnetic activity predictions based on coronal hole observations
- EUV index
- Radiation belt index
- Improved image analysis capability

Identify Candidates and Foster Development of New Models

- Collaborate with the international research community
- Participate in International Space Environment Services (ISES) Regional Warning Center Workshops
- Support Space Weather Week and Prediction Challenges
- Participate in Community Coordinated Modeling Center

Internal SEC Process for Selecting New Models

- Solicit questionaire from modeler available on Web
- Internal evaluation of models based on three main categories:
 - Strategic Importance to SEC
 - Operational Significance
 - Implementation Readiness
- Estimate cost/benefit to transition to operations
- Make recommendation to management for selection
- Develop test product and begin long-term validation
- Evaluate for final transition to operations

Model Evaluation

Model evaluation requires consideration of operational needs and capabilities, as well as consideration of scientific validity.

- Scientific Validation
 - Provided by the researcher
 - Gives a "proof-of-principle" for the model
 - However, it typically is limited to a few specific conditions,
 - Often does not allow quantitative inter-comparison with other models
- User-Oriented Evaluation
 - Evaluate the relevance for operational needs
 - Determine usability within real-time operations
 - Estimate improvement to current capabilities

Transition to Operations: What is Required?

The transition process requires many stages, and must involve scientists, programmers, and users of the model output.

- Define a "concept-of-operations"
 - How will the model be run, what actions will be taken, and what contingency actions are needed?
- Run models in a real-time, operational environment
- Begin long-term validation
- Create user interface to provide required functionality
- Create test products for end-user evaluation
- Determine how new procedures mesh with current operations
- Modify user-interface, visualization, concept-of-operations, ...
- Provide user training and documentation

Operational Execution: What is Required?

Operational execution requires a continuing effort, involving scientists, programmers, forecasters/users, and researchers.

- Maintain a controlled software configuration and concept of operations
- Obtain a continuous measures of performance
 - Long-term assessment of model capabilities
 - Establishes metrics to evaluate new models and/or data
- Make long-term validation available to the relevant research and user communities
- Support operational systems, including data ingest, model execution, user-interface, validation, and archival

Software Infrastructure for Multiple Models

Effective use of multiple, evolving models is enhanced by sharing an underlying software environment that is flexible and generic

- All models have unique features
 - Complexity, inputs, outputs, visualization, validation
- All models can benefit from some common software services
 - Manual and event-driven model initiation
 - Access to archival and real-time databases
 - Verification of inputs and outputs
 - Views of inputs and outputs
 - Issue output to users
 - Log events and errors
 - Archive information

Models Currently Under Consideration

- Background Solar Wind (Wang-Sheeley/Arge & Pizzo)
- Magnetopause Location (Shue/Detman)
- Auroral Electrojets (Real-time AMIE/MHD/...)
- Solar Spectrum (Solar2000)
- Storm-time Neutral Density
- Coupled Thermosphere/Ionosphere

Questions

- How do we keep track of and prioritize operational requirements in the selection of models?
- How can we best simplify the tasks of the RPCs in transitioning models to operations?
- What short-term goals can we establish to demonstrate the success of the CCMC?
- How do we ensure buy-in by both the science and operations communities?
- Should the CCMC eventually become a clearinghouse for research models with space weather potential?

Recommendations

- Model Selection for the CCMC:
 - Models that overlap interests in the operations and research communities should be given high priority
- Metrics:
 - Metrics with operational value should be applied to the CCMC models
- Validation:
 - Validation results should be made publicly available, together with validation performed external to the CCMC
- Formalize the Operations Working Group

