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Introduction

Two aspects of M-I coupling appear to require full ionospheric
models (i.e., a "thick" ionosphere).

The first concerns the ionospheric outflows.

The second concerns the "prompt" response of the ionosphere to
changes in magnetospheric convection.
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Precipitating Electron Dependence

Correlation significant for t-test > 2.04 (95% Confidence)�

Regression from orbit averages for orbits 8260 – 8292�

Scatter points are 1-sec averages for orbits 8273 – 8279
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Poynting Flux v Electron Density

0.001 0.010 0.100 1.000 10.000 100.000
Average Electron Density (#/cm3)

10-4

10-2

100

102

104

A
ve

ra
ge

 P
oy

nt
in

g 
F

lu
x 

(m
W

/m
2 )

slope = 1.184

r = 0.486

t-test =  3.097

Ion Flux v Poynting Flux
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Basics of Magnetosphere-Ionosphere
Interactions

Strangeway and Raeder [JGR, 2001] present a detailed 
analysis of the electron and ion momentum equations
governing M-I interactions, including all ion and electron
collision frequencies. Their analysis shows that provided
nen/We << 1, the momentum equations can be rewritten as:

“Frozen-in” electron fluid:

    E + Ui – j/ne ´́ B = 0

Momentum equation:

    
rDUi

Dt = – ÑÑP + j ́x B – rν in(Ui – Un)

Magnetosphere Ionosphere



Relationship Between Maxwell Stress and
Poynting Flux

From the frozen-in condition for the electron fluid

    Curvature Pressure

j⊥•E⊥ = Ui⊥•
(B •∇)B

µ0
–Ui⊥•∇ Β2

2µ0

= – ∇ ||•S|| – ∇⊥• S⊥ –
∂
∂t

Β2

2µ0

   ∇|| •S|| < 0 when field-aligned Poynting flux flows into the
ionosphere, as occurs when the magnetosphere is a generator.

For the ionosphere to appear as a generator Poynting flux
must flow out of the ionosphere, requiring an excess of
magnetic flux transported into the outflow region, i.e.,

   
U i⊥

•∇ Β2

2µ0
< 0

Note: this makes no assumptions concerning induction
electric fields, but it does imply that the ionosphere must be
“compressible” for there to be outward Poynting flux.



The “Prompt Ionosphere” Paradox

For the ionosphere to move the magnetosphere we require
a magnetic pressure gradient. Yet the prompt response, which is
assumed to be a signature of rapid fast-mode propagation,
implies that magnetic pressure gradients are small.

Thus the very signature that is used to argue for an
ionospheric driver of magnetospheric convection –
“promptness” implies that the ionosphere moves first – suggests
that there are no forces (magnetic pressure) to cause the motion.

This paradox requires that we investigate wave propagation
in a dissipative medium.



Towards Resolving the Paradox

Need to investigate wave propagation (fast mode) in a
dissipative medium.

First, linearize the equations.

Momentum equation

    
ρ

∂Ui
∂t

= j ×× B -ρν inUi

Wave Diffusion

Maxwell’s relations

      ∇×∇×b = µ0j

      ∇×E = - ∇× ∂b ∂t

(For simplicity displacement current is ignored.)

Frozen in ions (also for simplicity)

   E +Ui ×× B = 0

Gives the “Telegraphist’s Equation” (e.g., Morse and Feshbach,
Part 1 [1953])

    ∂
2Ui ∂t2∂
2Ui ∂t2 = Va

2∇2Ui - ν in ∂Ui ∂t



Green’s Functions for Telegraphist’s Equation



The Quandary Remains

First, a caution: The one-dimensional Green’s function for
the telegraphist’s equation is a plane wave solution. This implies
that the source function is not a 3-D delta-function, but an
infinite plane of point sources. This further implies isotropic
wave dispersion.

Second, even if the solutions are valid, the differential flow
as a function of altitude again results in large induction electric
fields. The magnetic field will change at a rate of ~ 100 nT/s.

As a consequence, currents will flow, generating forces to
oppose the change in the magnetic field. This will effectively
“lock” the higher altitude (wave-dominated) region to the lower
altitude (diffusive) ionosphere.



Conclusions

• Understanding ionospheric outflows requires that the
energetics of the ionosphere as a function of altitude be
included in models.

• As an interim step, outflow rates could be parameterized as a
function of input fluxes (Poynting flux, precipitating electron
density), allowing for inclusion in global models.

• The prompt ionospheric response, used to argue for an
ionospheric driver, also implies that pressure gradients are
small. Where’s the driver?

• We have begin to address this paradox by investigating wave
propagation in a dissipative medium. Initial analysis suggests
that the “driver” is at higher altitudes, but this still leads back
to the original quandary. Moving the ionosphere requires
strong currents to overcome the drag of the neutral
atmosphere.

• The ultimate resolution of this paradox may require global
simulations with a fully resolved ionosphere and surface-
ionosphere waveguide.




