900 20 Ra 120 Rs 220 Rs 150°

CME Computations with Coupled Coronal and Solar Wind Models*

Jon Linker, Zoran Mikic, Pete Riley, and Roberto Lionello

SAIC, San Diego, California.

Dusan Odstreil and Vic Pizzo

NOAA Space Environment Center

Janet Luhmann

University of California, Berkeley

*Research supported by NASA and Boston University's Integrated Space Weather Modeling Project (funded by NSF and AFOSR)

Numerical Models and Simulations

Coronal Model

- \circ 2-D ideal MHD equations, γ =1.05
- semi-implicit finite-difference scheme
- o non-uniform grid with staggered values

Heliospheric Model

- \circ 2-D ideal MHD equations, $\gamma = 5/3$
- explicit finite-difference TVDLF scheme
- uniform grid with cell-centered values

Numerical Simulations

- disruption of a sheared helmet streamer, launching of a CME
- 2-D merging of coronal and heliospheric models
- propagation of disturbances through the inner heliosphere
- input for geoeffectiveness studies

Helmet Streamer Configuration for CME Studies

Flux $\Psi(r,z)$

Initial Potential Field

Relaxed Helmet Streamer

Relaxed Helmet Streamer

Eruption of a 3D Flux Rope

Merged Numerical Grids

Coronal Model (1 Rs - 20 Rs)

Heliospheric Model (20 Rs - 220 Rs)

SAIC (San Diego, CA): 200x300 grid points $\Delta r = 0.0053 - 0.59 \text{ Rs}, \Delta \theta = 0.24 - 2.4^{\circ}$

NOTE: Only every 5th grid line is shown

CIRES/SEC (Boulder, CO): 340x240 grid points $\Delta r = 0.5 \text{ Rs}, \Delta \theta = 0.5^{0}$

NOTE: Only every 10th grid line is shown

Geoeffective Parameters

Radial-Meridional Distribution of the Meridional IMF at 360 h

Evolution at 1 AU

