Web Visualization:

Web interface 3D Magnetosphere

BATS-R-US, UCLA-GGCM

Operation:

slice plots:

Specify slice location, plot area variables (up to 3)

-> color, arrows and / or contour lines

3D view (multicont9):

color plot on up to 9 slices within 3D plot area

Time = 14:44:000.00 Min: 1414 $|A_y, \nabla XA = B$ 20 Min: $z [R_E]$ -725Max: 112 logP [nPa] -20+1.32 -40 \times [R_E] -2.12

Time = 14:48:00 y= -0.125

3d View (MultiCont9):

Variable: N, selected slices at min(x),max(x),max(y),z=0

Slices:

BATS-R-US:

shown: log(P), V, B

Y=0 plane

-120 < x < 24, |z| < 48

UCLA-GGCM:

shown: N, grid

+25.1

-1.0

N [cm]

Visualization - Ionosphere

Time = 15:52:00

BATS-R-US, UCLA-GGCM:

2 hemispheres

Here: CTIM Σ P, mlat>55 deg.

IDL programs written from scratch, used existing library of reading routines.

SAMI2:

latitudinal slice

Here: electron, N+ density

Modified existing IDL scripts written by J. Huba.

Visualization - Ring Current

Ring current:

Shown:

electrons in equatorial plane

Magnetosphere in 3D, next viewgraph:

Space Weather Explorer, being developed by P.Reitan CCMC using OpenDx.

Shown: log(rho), fieldlines near critical points

