Related Links | Frequently Asked Questions | Community Feedback | Downloads | Sitemap
CCMC Home | CCMC Stakeholders | Our Team | Publications | Meetings and Workshops | Concept of Operations
Models At A Glance | ModelWeb Catalog and Archive
Request Procedures | Generate Input Data Files & Parameters | Movies on Request | About the Run Process | Publications Policy
Search run database | Request run output | Special events | Kameleon Software | Space Weather Explorer | Publications policy
Instant Model Run
Forecasting Support tools | iSWA | DONKI | Mission Support | Experimental Real Time Simulations | Operational Geospace Model Validations
Intl Forum | GEM Challenge | CEDAR ETI Challenge | GEM-CEDAR Challenge | SHINE Challenge | CME Arrival Time Scoreboard | Flare Scoreboard | SEP Scoreboard | IMF Bz Scoreboard
Educational materials &activities | Space Weather REDI Initiative | SW REDI Bootcamp | Student Research Contest | Tutorial at CEDAR | Forecaster Tools
Missions near Earth/in Earth-orbit | MMS | Van Allen Probes | THEMIS | MESSENGER | STEREO | Spitzer | MAVEN | MSL | Dawn | Kepler | EPOXI | Juno | CASSINI | Voyager | New Horizons | Sounding Rockets | International
Research Community Support | CCMC Workshops | NASA Robotic Mission Operator Workshops | LWS Support | Exo-CCMC | DREAM2 Support | HELCATS Support
iSWA | DONKI | Kameleon | StereoCat | EEGGL | CME Scoreboard | SEP Scoreboard | FLR Scoreboard | SEA5

Thermosphere Ionosphere Electrodynamics General Circulation Model


CCMC Services available for TIE-GCM
Request a Run
View Request Results

Model Developer(s)
R. G. Roble et al.
High Altitude Observatory, National Center for Atmospheric Research

Model Description
The NCAR Thermosphere-Ionosphere- Electrodynamics General Circulation Model (TIE-GCM) is a comprehensive, first-principles, three-dimensional, non-linear representation of the coupled thermosphere and ionosphere system that includes a self-consistent solution of the low-latitude electric field. The model solves the three-dimensional momentum, energy and continuity equations for neutral and ion species at each time step, using a semi-implicit, fourth-order, centered finite difference scheme, on each pressure surface in a staggered vertical grid. It has 29 constant-pressure levels in the vertical, extending from approximately 97 km to 500 km in intervals of one-half scale height, and a 5° x 5° latitude-longitude grid, in its base configuration. The time step is 120 s.

Hydrostatic equilibrium, constant gravity, steady-state ion and electron energy equations, and incompressibility on a constant pressure surface, are assumed. Ion velocities are derived from the potential field created by combining the imposed magnetospheric potential with the low-latitude dynamo potential, and then calculating ion velocities from ExB drifts, rather than solving the ion momentum equations explicitly. Some minor species are not currently included in the model, including hydrogen and helium and their ions, and argon. Several parameterizations are used in the TIE-GCM: an empirical model is used to specify photoelectron heating; the production of secondary electrons is included using an empirical model derived from two-stream calculations, the effects of mixing by gravity waves are included using an eddy diffusion formulation; CO2 is included by specifying a lower boundary condition and assuming that it is in diffusive equilibrium. The upper boundary conditions for electron heat transfer and electron number flux are empirical formulations. At the lower boundary, atmospheric tides are specified using the Global Scale Wave Model (GSWM).

Model Input

National Aeronautics and Space Administration Air Force Materiel Command Air Force Office of Scientific Research Air Force Research Laboratory Air Force Weather Agency NOAA Space Environment Center National Science Foundation Office of Naval Research

| | Privacy, Security Notices

CCMC logo designed by artist Nana Bagdavadze