Related Links | Frequently Asked Questions | Community Feedback | Downloads | Sitemap
CCMC Home | CCMC Stakeholders | Our Team | Publications | Meetings and Workshops | Concept of Operations
Models At A Glance | ModelWeb Catalog and Archive
Request Procedures | Generate Input Data Files & Parameters | Movies on Request | About the Run Process | Publications Policy
Search run database | Request run output | Special events | Kameleon Software | Space Weather Explorer | Publications policy
Instant Model Run
Forecasting Support tools | iSWA | DONKI | Mission Support | Experimental Real Time Simulations | Operational Geospace Model Validations
Intl Forum | GEM Challenge | CEDAR ETI Challenge | GEM-CEDAR Challenge | SHINE Challenge | CME Arrival Time Scoreboard | Flare Scoreboard | SEP Scoreboard | IMF Bz Scoreboard
Educational materials &activities | Space Weather REDI Initiative | SW REDI Bootcamp | Student Research Contest | Tutorial at CEDAR | Forecaster Tools
Missions near Earth/in Earth-orbit | MMS | Van Allen Probes | THEMIS | MESSENGER | STEREO | Spitzer | MAVEN | MSL | Dawn | Kepler | EPOXI | Juno | CASSINI | Voyager | New Horizons | Sounding Rockets | International
Research Community Support | CCMC Workshops | NASA Robotic Mission Operator Workshops | LWS Support | Exo-CCMC | DREAM2 Support | HELCATS Support
iSWA | DONKI | Kameleon | StereoCat | EEGGL | CME Scoreboard | SEP Scoreboard | FLR Scoreboard | SEA5

LANL*: Radiation belt drift shell modeling


CCMC Services available for LANL*
Run Instantly
Download Source Code

Model Developer(s)
Yiqun Yu, Josef Koller
Los Alamos National Laboratory

Model Description
LANL* is a tool developed for quickly obtaining L* values, six orders of magnitude (~ one million times) faster than convectional approaches that require global numerical field lines tracing and integration. This model is based on a modern machine learning technique (feed-forward artificial neural network) by supervising a large data pool obtained from the IRBEM library, which is the traditional source for numerically calculating the L* values. The pool consists of about 100,000 samples randomly distributed within the magnetosphere (r: [1.03, 11.5] Re) and within a whole solar cycle from 1/1/1994 to 1/1/2005.

There are seven LANL* models, each corresponding to its underlying magnetic field configuration that is used to create the data sample pool. They are Olson and Pfitzer quiet model (OPQuiet), Pfitzer and Olson dynamic model (OPDyn), Tsyganenko 1989 model (T89), Tsyganenko 1996 model (T96), Tsyganenko 2001 quiet model (T01Quiet), Tsyganenko 2003 storm model (T01Storm), and Tsyganenko and Sitnov 2005 model (T05).

Model Input
The LANL* model uses solar wind conditions (and (G1, G2, G3), (W1, W2, W3, W4, W5, W6) indices for T01 and T05 models respectively), local pitch angle, position, Mcllwain L shell, and magnetic field at the mirror point. The solar wind conditions (and G, W indices for T01 and T05 respectively) used for each LANL* model are consistent with the input for its underlying magnetic field configuration.

When using the CCMC web interface for instantaneous calculation of L* values, the user chooses the underlying magnetic field configuration, position (XYZ-GSM [Re]), pitch angle, start date/time and duration, and output frequency. The solar wind parameters are internally determined from the Qin-Denton omni2 database downloaded from the ViRBO website. The Mcllwain L and magnetic field at the mirror point are also internally determined from the IRBEM library.

For each underlying magnetic field model, below are the valid ranges for the inputs.

In addition, the LANLstar model presents its constraint based on its learning/training process:

Model Output
The output from the LANL* model are L* value at the selected time, position, and pitch angle as well as McllWain L shell, the second adiabatic invariant I, magnetic field at the mirror point, and solar wind conditions (and G, W indices for T01 and T05 respectively).

References and relevant publications

Source Code Available at:
https://pythonhosted.org/SpacePy/lanlstar.html#module-spacepy.LANLstar

CCMC Contact(s)

301-286-1085

Developer Contact(s)

National Aeronautics and Space Administration Air Force Materiel Command Air Force Office of Scientific Research Air Force Research Laboratory Air Force Weather Agency NOAA Space Environment Center National Science Foundation Office of Naval Research

| | Privacy, Security Notices

CCMC logo designed by artist Nana Bagdavadze