Welcome to the new CCMC website!

Please note that some pages may have moved during the migration. If you experience any issues with the new website, please reach out to gsfc-ccmc-support@lists.hq.nasa.gov.

Last Updated: 05/26/2022

SEPSTER2D

Version: 1.0

SEPSTER2D is an empirical model to predict SEP event-integrated and peak intensity spectra between 10 and 130 MeV at 1AU, assuming an energy-dependent 2D Gaussian spatial distribution, and accounting for the correlation between the intensity and the speed of the parent CME, and the magnetic-field-line connection angle. The magnetic footpoints of the IMF field lines passing through the observer (Earth, STEREO-A and -B) are estimated at CME first appearance time and at a 2.5 Rs radial distance based on a simple IMF Parker spiral model.

Caveats:

Predicted intensities are expected to overestimate the observations for relatively slow (<600km/s) CMEs and narrow SEP events. SEP intensities above 130 MeV are based on spectral extrapolations and are characterized by large uncertainties.

Inputs

CME speed, direction and first appearance time from DONKI; solar wind speed from ACE/DSCOVR/STEREO

Outputs

SEP peak and event-integrated intensities (both differential and energy-integrated) at energies between 10 and 130 MeV, along with corresponding uncertainties. Time of peak intensity (added in version 1.1)

Domains

  • Heliosphere / Inner Heliosphere

Space Weather Impacts

  • Solar energetic particles - SEPs (human exploration, aviation safety, aerospace assets functionality)

Publications

Code

Code Languages: C/C++

Contacts

Publication Policy

Bruno, A., Richardson, I.G. Empirical Model of 10-30 MeV Solar Energetic Particle Spectra at 1 AU Based on Coronal Mass Ejection Speed and Direction. Sol Phys 296, 36 (2021). https://doi.org/10.1007/s11207-021-01779-4

In addition to any model-specific policy, please refer to the General Publication Policy.