Scoreboard

Steve Johnson3,2, M. Leila Mays1, Masha Kuznetsova1, Joycelyn Jones1, Eddie Semones2, Kerry Lee2, Janet Barzilla3,2, Kathryn Whitman4,2, Phillip Quinn3,2, Christopher Mertens2, Ian Richardson6,1, Mark Dierckxsens7, Mike Marsh8

1NASA Goddard Space Flight Center, 2NASA Johnson Space Center, 3Leidos Exploration and Mission Support, 4University of Houston, 5NASA Langley Research Center, 6University of Maryland, 7BIRA-IASB, 8UK Met Office
Planning for the SEP Scoreboard started in 2016 (led by BIRA-IASB, GSFC, UK Met Office)

Builds upon the flare scoreboard and CME arrival time scoreboard

Automated system; model developers can routinely upload their predictions to an anonymous ftp. Forecast data will be parsed and stored in a database which is accessible to anyone via an API

SEP forecasts can be roughly divided into three categories:

- Continuous/Probabilistic
- Solar Event Triggered
- Non Near Real-Time

The SEP scoreboard will focus on real-time forecasts (first and second categories) and will collect: proton intensity profile, threshold crossing probability, onset time, and duration.

The SEP scoreboard is part of the ISWAT SEP Validation Team that also focuses historical comparisons, particularly for those physics-based models in the third category that are not ready or relevant for real-time modeling.

https://ccmc.gsfc.nasa.gov/challenges/sep.php
Flare:
AFRL PPS
COMSESEP SEPForecast (BIRA)
FORSPEF (NOA)
SPARX (Dalla, Marsh)

CME:
SEPSTER (Richardson)
St. Cyr (Mauna Loa CME)

Flare and CME:
COMSESEP SEPForecast
FORSPEF (NOA)
SOLPENCO (Arans)

Flare and proton intensity:
UMASEP (Núñez)
Bouhrahimi model

Electron intensity:
HESPERIA REleASE

Flare, Radio, H-alpha:
SWPC PPM

Flare, Radio:
ESPERTA (Laurenza)

Radio:
AER SEP Model (Winter)
In 2018 CCMC started a 3 year project (ISEP) with NASA Space Radiation Analysis Group to **transition 6 research Solar Energetic Particle models to operations**: including MAG4, UMASEP, RELeASE, SEPSTER, SEPMOD, STAT

These **models were chosen by SRAG** based on their operational requirements including

- Can it run in real-time?
- Is the input data available in near real-time?
- Some degree of documented performance

Models transitioned, and **SEP Scoreboard displays** built by CCMC will be used operationally by SRAG for human missions beyond LEO starting in 2022.
For different energy ranges/thresholds models may forecast:

- Continuous probability timeseries of threshold crossing
- Continuous intensity timeseries
- Peak intensity for event
- Peak intensity with the next x hours
- and others

SEP Scoreboard Goals

- Uniform JSON input format and scoreboard displays so multiple models can be viewed and compared together
- Displays should be easy for space weather operators to understand and take action on, but contain all necessary information

SEP Forecast Types

For different energy ranges/thresholds models may forecast:

- Continuous probability timeseries of threshold crossing
- Continuous intensity timeseries
- Peak intensity for event
- Peak intensity with the next x hours
- and others
Proton Energy Range Predictions by Model

- **MAG4**: >10 MeV
- **REleASE**: 15.8–39.8 MeV, 28.2–50.1 MeV
- **SEPSTER** (Richardson):
 - 14-24 MeV; expanded to >10 MeV and >100 MeV by proxy
- **SEPMOD**: 10-100 MeV; expanded to 1 GeV
 - custom differential/integral channels possible
- **STAT**: 1-2 GeV
 - custom differential/integral channels possible
 - including >10 MeV, > 50MeV, >100 MeV
- **UMASEP**: >10 MeV, >100 MeV, >500 MeV
Display will be built for multiple forecast types/stages

- **(A)** probability heat map and time series (MAG4, SWPC)
- **(B)** peak intensity heat map (SEPSTER, UMASEP, REleASE, SEPMOD)
 - SEPSTER peak intensity is for entire event not including ESP
 - UMASEP peak intensity is for the next 1, 3, 7 hours
 - REleASE peak intensity is for next 30, 60, 90 min; derive from the timeseries
 - SEPMOD peak derived from the timeseries
- **(C)** intensity time series (REleASE, SEPMOD, UMASEP, STAT) – coming in 2020
 - REleASE time series: next 30, 60, 90 min
 - UMASEP timeseries: next 1, 3, 7 hours
 - SEPMOD timeseries: next 7 days
- **(D)** all-clear forecast time series: MAG4, UMASEP, REleASE, SEPSTER, SEPMOD, STAT – coming in 2021
Demo Screenshots
Demo – simulated real-time mode (mock-up):

2017-09-03 12:00 UT Probability heat map and time series
Demo: all clear display
Demo – historical mode:
2017-09-03 12:00 UT

red line: S1 event onset
(>10 MeV first exceeds 10 pfu)

gray shading: S1 event
(>10 MeV exceeds 10 pfu)
Demo: 2017-09-04 14:00 UT
Demo – historical mode: 2017-09-04 14:00 UT
Demo – historical mode: 2017-09-04 14:00 UT

Hover feature shows value, issue time, prediction window length
Demo – historical mode: 2017-09-04 14:00 UT

uncertainty shown as y error bars
Demo – historical mode: 2017-09-04 14:00 UT

Model family feature: uses same symbol for all model variations
Demo:
2017-09-05 03:00 UT
SEP Scoreboard

Proton Probability Forecasts:
2017-09-05 03:00 UT

- **MAG4_HARP**
 - Probability of Crossing Threshold (%): 11.0
 - > 10 MeV: No Data
 - > 100 MeV: No Data

- **MAG4_HARP_HMI**
 - Probability of Crossing Threshold (%): 12.0
 - > 10 MeV: No Data
 - > 100 MeV: No Data

- **MAG4_LOS_d**
 - Probability of Crossing Threshold (%): 7.0
 - > 10 MeV: No Data
 - > 100 MeV: No Data

- **SWPC Day 1**
 - Probability of Crossing Threshold (%): 10.0
 - > 10 MeV: No Data
 - > 100 MeV: No Data

Proton All Clear Forecasts:
2017-09-05 03:00 UT

- **MAG4_HARP**
 - Not Clear
 - No Data

- **MAG4_HARP_HMI**
 - Not Clear
 - No Data

- **MAG4_LOS_d**
 - Not Clear
 - No Data

- **SWPC Day 1**
 - Not Clear
 - No Data

Legend:
- Green: All Clear
- Purple: Not All Clear
- Gray: No Data
Demo:
2017-09-06 00:00 UT
Demo:
2019-10-01 00:00 UT
Demo:
Peak Intensity heat map on 2017-09-04, 09-05, 09-06

Proton Peak Intensity Forecasts:

2017-09-04
20:35 UT

SEPSTER
STAT
UMASEP

Clear
No data

Clear
No data

29 ± 6

Proton Peak Intensity Forecasts:

2017-09-05
00:00 UT

SEPSTER
STAT
UMASEP

No data
No data

No data
No data

Proton Peak Intensity Forecasts:

2017-09-06
15:00 UT

SEPSTER
STAT
UMASEP

No data
No data

No data
Not Clear

2 ± 0
JSON model output schema

• Initial JSON schema developed by Mark Dierckxsens
• Continued to iterate with SRAG and model developer community to define JSON file format
• Schema covers every known SEP model in the community (for scoreboard display purposes)
• Scoreboard database design is based on the schema
• Provided detailed examples, python helper script to write out the format, script documentation, and visual schema:
 https://ccmc.gsfc.nasa.gov/challenges/sep.php#format
• Email us to get help putting your model output into the required format.
Planned SEP Scoreboard Connections

Flare Scoreboard

DONKI: CCMC’s real-time SW Event Catalog

CME Scoreboard
ISWAT SEP Validation Team

Team Leads: K. Whitman, P. Quinn, H. Bain, I.G. Richardson, M.L. Mays
Scoreboard Leads: M. Dierckxsens, M.L. Mays

- Began in 2017 as the “SEP Working Team”; now part of ISWAT
- Conducted 3 community campaign sessions: SHINE 2018-2019, and ESWW 2018
- Bring together SEP modelers, observers, operators and forecasters
- Inform research community operational needs
- Compare model results for operationally relevant information for 3 SEP events
- Contact us to get involved: https://www.iswat-cospar.org/h3-01

Preliminary comparisons of integral intensity time series for 5 different models for the September 2017 event (SHINE 2019 campaign)
Summary: SEP Scoreboard

- Six models are being added to the scoreboard as part of a project with NASA Space Radiation Analysis Group; all models are welcome.
- The Scoreboard displays will be available publicly on the web early in 2020: probability time series and heat map, and peak intensity heat map
- The SEP Validation Team has performed preliminary validation for 3 historical events as part of SHINE 2018-2019 and ESWW 2018 community campaigns
- Everyone in the community is welcome to participate!
 - Models that run in real-time: provide model outputs to the scoreboard via ftp
 - Models that run in historical mode/for science studies: provide results and participate in the SEP Validation Team activities

https://ccmc.gsfc.nasa.gov/challenges/sep.php
Extra slides
Schema contains necessary details!