MI coupling impact of superthermal electrons on diffuse aurora precipitation and ionospheric conductance: Missing piece in the global MHD models

Hyunju K. Connor & George V. Khazanov
NASA Goddard Space Flight Center

This material is based upon work supported by the National Science Foundation under Award No. 1331368.
MI coupling processes in diffuse aurora regions

Khazanov et al. [2015]
\[\beta \frac{\partial \phi}{\partial t} + \mu \frac{\partial \phi}{\partial s} - \frac{1 - \mu^2}{2} \left(\frac{1}{B} \frac{\partial B}{\partial s} - \frac{F}{E} \right) \frac{\partial \phi}{\partial \mu} + EF \mu \frac{\partial}{\partial E} \left(\frac{\phi}{E} \right) = Q + \bar{S} \]

\[\bar{S} = \langle S_{ee} \rangle + \langle S_{ei} \rangle + \langle S_{en}^* \rangle + \langle S_{en}^+ \rangle + \langle S_{ew} \rangle \]
Auroral spectra at 800 km altitude

The MI coupling dynamics produces stronger auroral flux and stronger ionospheric conductivity.

Reproduced from Khazanov et al. [2015]
MI coupling impact on ionospheric conductance for various initial auroral spectra

We input 6 initial auroral spectra to STET:
1. Maxwellian distribution
2. Total auroral energy flux at 1 mW/m²
3. 6 auroral char. energies (400eV – 5keV)

The MI coupling processes can increase the height-integrated conductance up to 35 – 70%.

MI coupling impact can be significant during geomagnetic storm when the total auroral energy flux can go over 50 mW/m².
The MI coupling dynamics of superthermal electrons can be the physics mechanism to solve the CPCP problem by increasing ionospheric conductance.
Summary

- We examine magnetosphere – ionosphere energy interchange in the diffuse aurora region using SuperThermal electron transport code.

- Our study showed that the MI coupling processes of superthermal electrons produce stronger auroral precipitation and increase height-integrated conductance up to 35 – 70%.

- Note that we introduce 1mW/m² of total aurora flux. Geomagnetic events can produce over 50mW/m² of total auroral flux, indicating more significant MI coupling impact during storm times.

- The MI energy interchange of superthermal electrons can solve a strong transpolar cap potential problem of the global MHD models by increasing ionospheric conductance and thus decreasing the ionospheric electric potentials via a current continuity equation.
The MI coupling dynamics of superthermal electrons can be a physics-based reason to increase ionospheric conductance and thus solve the CPCP problem.
Parameterization of the MI coupling impact on the ionospheric conductance

- We investigate the MI coupling impact of superthermal electrons on the height-integrated ionospheric conductance as a function of the auroral characteristic energies (E_0).

- The following input conditions are introduced to a STET code.
 1. Isotropic Maxwellian energy distribution of auroral electrons.
 2. 1 mW/m2 of total energy flux (Q_0) at 800km altitude
 3. 6 different characteristic energies ($E_0 = 400eV – 5keV$)

- We conduct 12 simulations by turning on and off the MI coupling effect inside a STEP code.
MI coupling impact for various auroral characteristic energies \((E_0)\)

The MI coupling dynamics of superthermal electrons in the diffuse auroral regions produces stronger auroral energy flux and thus increases ionospheric conductivity throughout the whole altitude.
References

Methodology

1. **Energy distribution of precipitating electrons**
 Robinson [1987] assumed Maxwellian distribution:
 \[
 \phi(E) = \frac{Q_0}{2E_0} E \exp\left(-\frac{E}{E_0}\right)
 \]
 where \(Q_0\): Total energy flux [keV cm\(^2\) s\(^{-1}\)], \(E_0\): Characteristic energy [keV]

2. **Ionization rate calculation**
 \[q_{tot} = \frac{Q_0}{2\Delta \varepsilon} \frac{1}{H} f\]
 where \(\Delta \varepsilon\): Mean energy loss per ion pair production (0.0035 keV)
 \(H\): Scale height [cm]
 \(f\): Energy deposition function from Fang et al. [2010]

Fang et al. [2010] parameterize the energy deposition function based on sophisticated first principal models, providing more accurate calculation for any incident auroral energies between 100 eV – 1 MeV, while Robinson et al. [1987] used the energy deposition function from Rees [1963] that is applicable for 5 – 54 keV auroral energies.

3. **Electron density calculation**
 Robinson [1987] assumed steady state conditions and neglected transport. Then, the electron continuity equation becomes:
 \[
 \frac{\partial n}{\partial t} = q - \alpha n^2 + \nabla \cdot (n \mathbf{V})
 \]
 \[\rightarrow\]
 \[n = \frac{q}{\sqrt{\alpha}}\]
 where \(n\): electron density [cm\(^{-3}\)], \(q\): ionization rate [cm\(^3\) s\(^{-1}\)],
 \(\mathbf{V}\): ionospheric plasma velocity
 \(\alpha = 2.5 \times 10^{-6} e^{-\frac{H}{51.2}}\): effective recombination coefficient [cm\(^3\) s\(^{-1}\)]

4. **Ionospheric conductance calculation**
 Robinson [1987] neglected electron-neutral collisions. Then, Pederson and Hall conductivities are:
 \[\sigma_p = (ne/B)[\Omega_i, \nu_i/(\Omega_i^2 + \nu_i^2)]\]
 \[\sigma_h = (ne/B)[\nu_i^2/(\Omega_i^2 + \nu_i^2)]\]
 where \(n\): electron density, \(e\): electrical charge, \(B\): magnetic field strength,
 \(\Omega_i = eB/m_n\): ion gyrofrequency,
 \(\nu_i [s^{-1}] = 3.75 \times 10^{-10} n_n [cm^{-3}]\): ion-neutral collision frequency
 \(m_n\): mean molecular weight, \(n_n\): total neutral number density

Appendix:

Ionospheric Conductance Calculation Details
