International Forum for Space Weather Capabilities Assessment

Forum Home | Working Teams & Topics |  Overall Goals and Deliverables  | Sign Up | FAQ |  ICCMC-LWS Working Meeting & Presentations 
Single Event Effects

Related Links | Frequently Asked Questions | Community Feedback | Downloads | Sitemap
CCMC Home | CCMC Stakeholders | Our Team | Publications | Meetings and Workshops | Concept of Operations
Models At A Glance | ModelWeb Catalog and Archive
Request Procedures | Generate Input Data Files & Parameters | Movies on Request | About the Run Process | Publications Policy
Search run database | Request run output | Special events | Kameleon Software | Space Weather Explorer | Publications policy
Instant Model Run
Forecasting Support tools | iSWA | DONKI | Mission Support | Experimental Real Time Simulations | Operational Geospace Model Validations
Intl Forum | GEM Challenge | CEDAR ETI Challenge | GEM-CEDAR Challenge | SHINE Challenge | CME Arrival Time Scoreboard | Flare Scoreboard | SEP Scoreboard | IMF Bz Scoreboard
Educational materials &activities | Space Weather REDI Initiative | SW REDI Bootcamp | Student Research Contest | Tutorial at CEDAR | Forecaster Tools
Missions near Earth/in Earth-orbit | MMS | Van Allen Probes | THEMIS | MESSENGER | STEREO | Spitzer | MAVEN | MSL | Dawn | Kepler | EPOXI | Juno | CASSINI | Voyager | New Horizons | Sounding Rockets | International
Research Community Support | CCMC Workshops | NASA Robotic Mission Operator Workshops | LWS Support | Exo-CCMC | DREAM2 Support | HELCATS Support
iSWA | DONKI | Kameleon | StereoCat | EEGGL | CME Scoreboard | SEP Scoreboard | FLR Scoreboard | SEA5

Single Event Effects Working Team

MeV–GeV protons, ions

Team Leads: M. Xapsos, J. Mazur, P. Jiggens (contact team leads/forum organizers to be added to the team)
Participants: Anastasios Anastasiadis · Janessa Buhler* · Yaireska Collado-Vega* · Natalia Ganushkina* · Tim Guild · Piers Jiggens* · Insoo Jun* · Periasamy K Manoharan* · Christopher Mertens · Joseph Minow* · PAUL OBRIEN* · Brian Walsh · Michael Xapsos* · KiChang Yoon · Yihua Zheng* ·
Laila Andersson · Consuelo Cid · Erwin De Donder · Manolis K. Georgoulis* · Laura Godoy* · Daniel Heynderickx* · Irina Kitiashvili* · Masha Kuznetsova* · Kangjin Lee · Daniel Matthiä* · Leila Mays* · James McCollough · Collin Meierbachtol* · Athanasios Papaioannou · larry paxton* · Steve Petrinec* · DAVE PITCHFORD · Lutz Rastaetter* · Alexis Rouillard · Howard Singer* · W. Kent Tobiska* · Katherine Winters* ·

Communications: ccmc-see@googlegroups.com (mailing list)

Google drive: documents for radiation and plasma effects teams


User Needs
User groups:

  ⊕  Satellite designers (SD)
  ⊕  Satellite/launcher/aircraft* operators [SLAO]
  ⊕  Standards organizations (ISO/ECSS/NASA internal) [SO]
*effects on avionics are dealt with outside space industry

Satellite design:
Need average and worst case spectra, but worst case is hard to define because it depends on shielding and part of interest.

Satellite anomaly resolution:
Need the proton and ion spectrum at the vehicle at the time of the anomaly. Also need this information over history of mission to get a sense of whether time of anomaly was especially severe.


Working Team Goals


Working Team Deliverables


Physical Quantities and Metrics for Model Validation
  ⊕  SD+SLAO (SEU rate): proton fluxes (>30 MeV & > 50 MeV) [radiation belt peak vales (5-minute); worst-case SEP values; worst-case solar particle event (SPE) fluence]
  ⊕  SD (SEL/SEB probability): proton fluences (>30 MeV & > 50 MeV) [Orbit-averaged radiation belt flux (fluence); cumulative SEP fluence]
  ⊕  SD+SLAO+SO: Abundance ratios and charge states of SEP heavy ions (Z>2) [extension to event-to-event variability/distributions if possible]
  ⊕  SD+SLAO: LET behind nominal shielding** (1 g.cm-2)
**application of particle transport codes as black box only to derive useful quantities
  ⊕  SD+SLAO: Geomagnetic transmission functions at selected energies/for set of species [for SEP and GCR magnetically shielded flux calculations]
  ⊕  SLAO: SEP onset and peak timings***
***forecast not applied in specifications but could potentially be used by operators


Available Data Sources
Observations, impact information


Participating Models

Identified empirical/statistical models
  ⊕  Trapped protons: AP9 [RD 2] (also AP8 [RD 3] still used in some standards); PSB97 [RD 4] + update (local model based on SAMPEX/PET)
  ⊕  SEPs: ESP-PSYCHIC [RD 5] [RD 6] [RD 7] [RD 8] [RD 9]; JPL [RD 10] [RD 11] [RD 12] [RD 13]; MSU [RD 14]; SAPPHIRE [RD 15] [RD 16]
  ⊕  GCRs: ISO-15390 GCR model [RD 17]; Badhwar-O'Neill (BON) [RD 18] [RD 19] [RD 20]; DLR GCR model [RD 21]
  ⊕  ESHIEM-MSM (magnetospheric shielding code); Shea and Smart [RD 22]
Physics-based Models
  ⊕  PLANETOCOSMICS


List of Time Intervals in this Study

TBD
References

  ⊕  [RD 1] http://dev.sepem.oma.be/help/sep_effects.html
  ⊕  [RD 2] G.P. Ginet et al., AE9, AP9 and SPM: New Models for Specifying the Trapped Energetic Particle and Space Plasma Environment, 179:579-615, Space Sci. Rev., 2013.
  ⊕  [RD 3] Sawyer, D. M. & J. I. Vette, AP-8 Trapped Proton Environment for Solar Maximum and Solar Minimum, NSSDC/WDC-A-R&S 76-06, 1976.
  ⊕  [RD 4] Heynderickx et al., A Low Altitude Trapped Proton Model for Solar Minimum Conditions Based on SAMPEX/PET Data, IEEE Trans. Nuc. Sci., 46(6) 1999.
  ⊕  [RD 5] M.A. Xapsos et al., Probability Model for Peak Fluxes of Solar Proton Events, IEEE Trans. Nuc. Sci., 45(6), 1998.
  ⊕  [RD 6] M.A. Xapsos et al., Probability Model for Worst Case Solar Proton Event Fluences, IEEE Trans. Nuc. Sci., 46(6), 1999.
  ⊕  [RD 7] M.A. Xapsos et al., Probability Model for Cumulative Solar Proton Event Fluences, IEEE Trans. Nuc. Sci., 47(3), 2000.
  ⊕  [RD 8] M.A. Xapsos et al., Model for Solar Proton Risk Assessment, IEEE Trans. Nuc. Sci., 51(6), 2004.
  ⊕  [RD 9] M.A. Xapsos et al., Model for Cumulative Solar Heavy Ion Energy and Linear Energy Transfer Spectra, IEEE Trans. Nuc. Sci., 54(6), 2007.
  ⊕  [RD 10] J. Feynman et al., New Interplanetary Proton Fluence Model, J. Spacecraft & Rockets, 27(4), 1990.
  ⊕  [RD 11] J. Feynman et al., Interplanetary Proton Fluence Model: JPL 1991, J. Geophys. Res., 98(A8), 1993.
  ⊕  [RD 12] J. Feynman et al., The JPL proton fluence model: an update, J. Atm. STP, 64, 2002.
  ⊕  [RD 13] I. Jun et al., Statistics of solar energetic particle events: Fluences, durations, and time intervals, Adv. Space Res., 40, 2007.
  ⊕  [RD 14] R.A. Nymmik, Improved Environment Radiation Models, Adv. Space Res., 40, 2007.
  ⊕  [RD 15] P. Jiggens et al., ESA SEPEM Project: Peak Flux and Fluence Model, IEEE Trans. Nuc. Sci., 59(4), 2012.
[RD 16] P. Jiggens et al., Long-Term Destructive SEE Risk and Calculations Using Multiple “Worst-case” Events Versus Modelling, IEEE Trans. Nuc. Sci., 61(4), 2014.
  ⊕  [RD 17] International Standard ISO-15390, Space environment (natural and artificial) — Galactic cosmic ray model, 2004.
  ⊕  [RD 18] G.D. Badhwar & P.M. O’Neill, Galactic Cosmic Radiation Model and its Applications, Adv. Space Res., 17(2), 1996.
  ⊕  [RD 19] P.M. O’Neill, Badhwar–O’Neill 2010 Galactic Cosmic Ray Flux Model – Revised, IEEE Trans. Nuc. Sci., 57(6), 2010.
  ⊕  [RD 20] P.M. O’Neill et al., Badhwar - O'Neill 2014 Galactic Cosmic Ray Flux Model Description, NASA/TP-2015-218569, 2016.
  ⊕  [RD 21] Matthiä et al., A ready-to-use galactic cosmic ray model, Adv. Space Res., 51, 2013.
  ⊕  [RD 22] D.F. Smart and M.F. Shea, A review of geomagnetic cutoff rigidities for earth-orbiting spacecraft, Adv. Space Res., 36, pg. 2012-2020, 2005.


<< Return to the forum homepage

National Aeronautics and Space Administration Air Force Materiel Command Air Force Office of Scientific Research Air Force Research Laboratory Air Force Weather Agency NOAA Space Environment Center National Science Foundation Office of Naval Research

| | Privacy, Security Notices

CCMC logo designed by artist Nana Bagdavadze