GEM Challenge: ground magnetic field perturbations

Pulkkinen, A., L. Rastätter, M. Kuznetsova and A. Chulaki

Acknowledgements: A. Ridley, CCMC staff, GEM community.
Contents

• Data preparation
• Methods of analysis
• Results
• Summary
Data preparation

• Selected storm events:
 1. October 29, 2003 06:00 UT - October 30, 06:00 UT.
 2. December 14, 2006 12:00 UT - December 16, 00:00 UT.
 3. August 31, 2001 00:00 UT - September 1, 00:00 UT.
 4. August 31, 2005 10:00 UT - September 1, 12:00 UT.

• For this particular analysis, 12 ground magnetometer stations were selected based on the spatiotemporal coverage.
Data preparation

Stations in geomagnetic dipole coordinates
Data preparation

• One-minute geomagnetic field data downloaded via INTERMAGNET.
• Visually detected baseline removed to obtain the disturbance field.
• Small data gaps no longer than few minutes patched via linear interpolation.
Methods of analysis

• Visual inspection of magnetic field time series by using the CCMC’s Metrics Tool.
• Mean (over 2 hour windows and different stations) power spectra generated for both observed and modeled field fluctuations.
Methods of analysis

• “Metrics” analysis (or metrics study)
 - The term *metric* not used in a strict mathematical sense but to refer to more general functions mapping two elements of a set into a single real number.
 - The computed number quantifies the model performance in terms of “distance” from the perfect performance.
 - Different metrics measure different aspects of the model performance.
 - Two metrics selected for the analysis.
Methods of analysis

• Prediction efficiency:

\[PE(x_{obs}, x_{mod}) = 1 - \frac{\left\langle \left(x_{obs} - x_{mod} \right)^2 \right\rangle_t}{\sigma_{obs}^2} \]

Perfect model, \(PE=1 \)

• Log-spectral distance (GIC-related derivation)

\[M_s(\tilde{x}_{obs}, \tilde{x}_{mod}) = \sqrt{\sum_{\omega} \left(\log \frac{\tilde{x}_{1|obs}}{\tilde{x}_{1|mod}} + \frac{\tilde{x}_{2|obs}}{\tilde{x}_{2|mod}} \right)^2} \]

Perfect model, \(M_s=0 \)
<table>
<thead>
<tr>
<th>Model setting description</th>
<th>Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMIT 2.0, currents from TIEGCM</td>
<td>1.CMIT</td>
</tr>
<tr>
<td>LFM</td>
<td>1.LFM</td>
</tr>
<tr>
<td>Weimer (2005, JGR), 4-min. output interpolated to 1 min.</td>
<td>1.WEIMER</td>
</tr>
<tr>
<td>OpenGGCM v3.1, number of cells: 3 million</td>
<td>1.OPENGGGCM</td>
</tr>
<tr>
<td>OpenGGCM v3.1, number of cells: 6.5 million</td>
<td>2.OPENGGGCM</td>
</tr>
<tr>
<td>BATS-R-US v7.73, number of cells: 2 million</td>
<td>1.SWMF</td>
</tr>
<tr>
<td>BATS-R-US v7.73, number of cells: 700000</td>
<td>2.SWMF</td>
</tr>
<tr>
<td>BATS-R-US v8.01 coupled to RCM, number of cells: 2 million</td>
<td>3.SWMF</td>
</tr>
<tr>
<td>BATS-R-US v8.01, number of cells: 3 million</td>
<td>4.SWMF</td>
</tr>
<tr>
<td>BATS-R-US v8.01 coupled to RCM, number of cells: 3 million</td>
<td>5.SWMF</td>
</tr>
<tr>
<td>BATS-R-US v20090403 coupled to RCM, number of cells 900000</td>
<td>6.SWMF</td>
</tr>
</tbody>
</table>
Magnetic field time series via Metrics Tool

Summer GEM, June 21-26, 2009, Snowmass, CO.
Magnetic field time series via Metrics Tool

Plot Options:
- Image magnification: 2.0
- Line thickness: 3
- Character thickness: 3 (all annotations)

Lock plot range:
- Min.: -1
- Max.: 1

Select model settings
- 1_SWMF: BATSRSU 7.73, 2M cells, CCMC
- 2_SWMF: BATSRSU 7.73, 700k cells (real-time setup), CCMC
- 3_SWMF: BATSRSU 8.01 with RCM, 2M cells, CCMC
- 4_SWMF: BATSRSU 8.01, 3 M cells, CCMC
- 5_SWMF: BATSRSU 8.01 with RCM, 3M cells, CCMC
- 6_SWMF: SWMF V.20090403, BATSRSU+RCM2, 900k cells, RT on 64 pros., A. Ridley
- 1_OPENGGCM: OpenGGCM 3.1, 3 M cells
- 1_LFM: LFM, Michael_Wiltberger (13/11/2008,15/05/2009)
- 1_CMIT: CMIT 2.0, George_Millward (28/05/2009, 04/06/2009)
- 1_WEIMER: Weimer 2005, Daniel_Weimer (12/05/2009)

Reset Form will reset changes to the defaults specified by the previous run of this script.

Update Plot will update (generate) the plot with the chosen time and plot parameters above.

Runs-on-Request: Contact CCMC Staff
Visualization: Dr. Lutz Rastätter
Magnetic field time series via Metrics Tool

B_North from observatory file: abk_OBS_20061214.txt

Model runs:
- 6_SWMF
- 1_OPENGGCM
- 1_WEIMER

Plot: CCMC

hours from 2006/12/14 12:00
Magnetic field time series via Metrics Tool

![Graph showing magnetic field time series](image)

Model runs:
1. SWMF
2. SWMF
3. SWMF
4. SWMF
5. SWMF
6. SWMF
1. OPENGGCM
2. OPENGGCM
1. LFM
1. CMIT
1. WEIMER

Plot: CCMC
Metrics results

• Report mean prediction efficiency for each event. Mean taken over all stations and both horizontal components.

• Report log-spectral distance computed by using the mean spectral power. Mean taken over all stations.
Metrics results

Prediction efficiency (black – E1, blue – E2, red – E3, green – E4)

Mean over events

Model setting identifier

Summer GEM, June 21-26, 2009, Snowmass, CO.
Metrics results

Log–spectral distance (black – E1, blue – E2, red – E3, green – E4)
Summary

- Observed and modeled data for 12 magnetometer stations analyzed for four storm events.
- 11 model settings analyzed.
- Visual analysis and later metrics analyses can be carried out via CCMC’s Metrics Tool.
- Overall rank determined by means of average prediction efficiencies and log-spectral distances.
- Different metrics provide quite different ranking.
- Additional checks and physics-based analyses to be carried out.