High-Latitude Neutral Density Maxima

Cheryl Huang¹, Yanshi Huang²,³, Yi-Jiun Su¹ and Eric Sutton¹
¹AFRL
²U. New Mexico
³COSMIAC

CEDAR-GEM Modeling Challenge
25 June 2015
Motivation: Poynting Flux Observations

Measured Poynting flux during the main phases of 14 moderate (-100 > SymH > -200 nT) magnetic storms. Significant energy is deposited into the polar cap during these events.

How is satellite drag affected?

Analyze accelerometer data for neutral density statistics at high latitudes.
Neutral Density Maxima
August 2011 Storm

Maxima in the observed neutral densities are defined as follows:

1. A running mean over 23 minutes or about 90 degrees is applied to the data;
2. Densities larger than a fixed percentage above the mean are selected as maxima.

We use 30% as a default value for our selected maximum values unless stated otherwise.
CHAMP Density Maxima
2002-2012

CHAMP density peaks (2001-2010)

<table>
<thead>
<tr>
<th>NH</th>
<th>mlat</th>
<th>mlt</th>
<th>By</th>
<th>Bz</th>
<th>press</th>
<th>symh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg</td>
<td>77.9017 (78.8369)</td>
<td>11.5333 (11.8193)</td>
<td>0.273008 (0.206940)</td>
<td>-1.07810 (-0.888067)</td>
<td>3.08227 (2.26153)</td>
<td>-19.3991 (-13.7544)</td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Std.Dev.</td>
<td>6.47307</td>
<td>6.44474</td>
<td>5.89326</td>
<td>5.08598</td>
<td>3.54243</td>
<td>29.4629</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SH</th>
<th>mlat</th>
<th>mlt</th>
<th>By</th>
<th>Bz</th>
<th>press</th>
<th>symh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg</td>
<td>-74.9906 (-75.8858)</td>
<td>11.5913 (11.7887)</td>
<td>0.311202 (0.391993)</td>
<td>-1.28847 (-1.13011)</td>
<td>3.24850 (2.45352)</td>
<td>-22.6188 (-16.7627)</td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Std.Dev.</td>
<td>7.04789</td>
<td>6.28633</td>
<td>6.18883</td>
<td>5.11734</td>
<td>3.50458</td>
<td>31.3097</td>
</tr>
</tbody>
</table>
Dependence of CHAMP NH Neutral Density Maxima on IMF B_y, B_z
Dependence of GRACE SH Neutral Density Maxima on IMF B_y, B_z

- $B_z > 10 \text{ nT}$
- $B_z < -10 \text{ nT}$
- $B_y < -10 \text{ nT}$
- $B_y > 10 \text{ nT}$
CHAMP Neutral Density Maxima
Dependence on SymH

\[
\text{SymH} \geq 0 \text{ nT} \\
0 > \text{SymH} \geq -100 \text{ nT} \\
-100 > \text{SymH} \geq -200 \text{ nT} \\
\text{SymH} < -200 \text{ nT}
\]
CHAMP Neutral Density Maxima
MLat, MLT Distributions
IMF B_\text{y} Dependence

Northern Hemisphere

Southern Hemisphere
Conclusions

• GRACE results are very similar to CHAMP (shown in MLT Coupling Workshop). The main difference between CHAMP and GRACE is that there are fewer maxima at CHAMP than at GRACE possibly due to CHAMP’s initial and subsequent lower altitudes = higher ambient density.

• The maxima occur predominantly at polar latitudes under all conditions.

• The average MLat in both datasets in the NH is 78°, in the SH it is -75°, with standard deviation of 6.5-7° in both hemispheres. Average MLT is 11.5 – 11.6, with standard deviation of 6.3-6.4 hours.

• The preponderance of heated neutrals at polar latitudes implies that drag will be affected significantly in this region at low and moderate levels of activity. Currently this is not predicted in most models.

• Challenge: improve predictions of (1) locations of neutral density Joule heating; (2) timing of energy transfer to neutrals during storms.