

M. Leila Mays, Joycelyn Jones & CCMC Team

9 June 2022

CCMC Workshop 2022

Validation at CCMC: Evaluating Model Performance

- Benchmarks current model performance. Traces progress over time.
- Validation to improve scientific understanding
 - Science-based metrics
 - CCMC leadership in community challenges/campaigns at GEM, CEDAR, SHINE, ISWAT
- Validation to determine R2O transition suitability
 - Operationally relevant metrics to test forecast value
 - CCMC validation collaborations with SWPC (ENLIL, SWMF, WSA, ADAPT)
- What to validate: focus on Essential Space Environment Quantities (ESEQs)
 - Linked to impacts or passed between domains Ο
 - Derived from observational data and model outputs \bigcirc
 - Track the metrics of the ESEQs over time. \bigcirc
 - Use ESEQs to create benchmarks, multi-model comparisons, scorecards. Ο

Modes:

- Historical validation of historical model runs
- Historical validation of real-time forecasts (CCMC community scoreboards)
- Simulated (as-if) real-time
 Real-time forecast forecast validation
- validation

Validation: Important Elements

- Community involvement and coordination, including operations
 - Community agreement on metrics selection and validation approach
 - Community definition of Essential Space Environment Quantities
 - COSPAR ISWAT teams
- Preparation of observations and their uncertainties
 - Involving data experts on validation teams
 - Some observations are actually techniques/models themselves
- Care in comparing models
 - Validation studies with different designs cannot be directly compared
- Transparency and collaboration in validation studies
 - Providing data and necessary details how were forecasts were constructed? How was validation performed?
 - CCMC CAMEL tool

Example: Validation Study using CCMC Runs-on-Request

Jian et al. (2015) Space Weather: solar wind speed at Ulysses

Examples: Validation Studies of CME Arrival Time Error using:

CCMC Real-Time Runs

Wold et al. (2018) *JSWSC*, for WSA-ENLIL+Cone:

- 10.4 ± 0.9 hours error
- 1.7 hour error increase with single coronagraph

Average Absolute Error at Earth, STEREO A & B

CCMC Scoreboards

Riley et al. (2018) Space Weather:

- First comprehensive analysis of CME scoreboard data
- 13 hours error (scoreboard average)
- ±20 hours standard deviation

Community Challenges

Solar / Heliosphere

https://ccmc.gsfc.nasa.gov/challenges/

SHINE/ISWAT/ESWW SEP Model Validation Challenge

2018 - Present

SHINE Challenge

2011 - 2014

Magnetosphere

GEM ULF Wave Modeling Challenge

2014 - 2019

GEM Dayside Kinetics Challenge

2016

GEM Mid-Tail Modeling Challenge

2014 - 2016

GEM Magnetopause Challenge

2008, 2015

GEM Global Magnetosphere Metrics Challenge

2008 - 2010

GEM Baseline Model Comparison Challenge

2009

Ionosphere

CEDAR GRAND Challenge SAPS Focus Study

2016 - 2017

<u>CEDAR Electrodynamics Thermosphere Ionosphere (CETI) Challenge</u>

2009 - 2014

<u>CEDAR GRAND Challenge Problems Related to Ionospheric Models and</u> <u>Observations</u>

2011 - 2014

Ionosphere / Magnetosphere

GEM-CEDAR Modeling Challenge

2014 - 2017

GEM-CEDAR Ionospheric Conductance Challenge

2016

Coordinated Community Effort:

International Forum on Space Weather Capabilities Assessment

•	-	TOINATED	
 SOLAR CCMC facilitator(s): P. Macneice Solar Flare Prediction (Leads: S. Murray, M. Georgoulis, S. Bloomfield, K.D. Leka Scoreboard Leads: S. Murray, M.L Mays) ssA-0,ssA-6 Coronal & Solar Wind Structure Coronal & SW Structure; Ambient SW; Coronal Hole Boundaries (Leads: P. Macneice, L. Jian) ssA-? 	 GEOSPACE: Geomagnetic Environment CCMC facilitator(s): L.Rastaetter Ground Magnetic Perturbations: dBdt, (Leads: D. Welling, H. Opgenoorth, C. Ngwira) Geomagnetic Indices (Leads: M. Liemohn Magnetopause location and geosync. (Leads: Y. Collado-Vega, S. Merkin) SSA1 	delta-B, GICs, FACs ssa-1) ssa-1 orbit crossing	
 3D CME kinematics and topology (Leads: B.Thompson, C.Moestl, D.Barnes) Solar Indices and Irradiance (Leads: J. Klenzing, C. Henney, K. Muglach) SSA-0 	(Louis, I. condo vogu, c. month) soart	Forum working te focused on differ	eams ent
 HELIOSPHERE CCMC facilitator(s): M.L. Mays, A. Taktakishvili, P. Macneice CME Arrival Time (Leads: C. Verbeke, M.L. Mays, A. Taktakishvili) ssa-1 IMF Bz at L1 (Leads: N. Savani, P. Riley) ssa-1 SEPs (Leads: LG, Pichardeon, P. Quinn, M. March, M.L. Mays, M.L. Ma	 GEOSPACE: Auroral Region CCMC facilitator(s): M.Kuznetsova Auroral precipitation and high latitude i (Leads: R. Robinson, Y. Zhang, B. Kosar) 	evaluation topics. Cross-team	
Coreboard Leads: M. Dierckxsens, M. Marsh) SSA-3,SSA-6 RADIATION and PLASMA EFFECTS Scope of work	IONOSPHERE		
 CCMC facilitator(s): Y. Zheng, M. Kuznetsova Surface Charging few eV - keV electrons, plasma density (Leads: J. Minow, D. Pitchford, N. Ganushkina) SSA-6 Internal Charging keV-MeV electrons (Leads: P. O'Brien, Y. Shprits) SSA-6 Single Event Effects MeV-GeV-TeV protons, ions (Leads: M. Xapsos, J. Mazur, P. Jiggens) SSA-3,SSA-6 Total Ionizing Dose keV-MeV electrons, keV-GeV protons, ions (Leads: I. Jun, T. Guild, M. Xapsos) SSA-6 Radiation effects for aviation (Leads: K. Tobiska, M. Meier) SSA-6 	 CCMC facilitator(s): J. Shim, M. Kuznetsova Neutral Density and Orbit Determination at LEO (Leads: S. Solomon, T. Fuller-Rowell, S. Bruinsma, E. Sutton) SSA-2 Global & Regional TEC (Leads: L. Scherliess, R. Calfas) SSA-4 Ionosphere Plasma Density: NmF2/foF2, hmF2, TEC (Leads: I. Tsagouri, M. Angling, J. Shim) SSA-5 Ionosphere Scintillation (Leads: E. Yizengaw) SSA-5 		

The COSPAR ISWAT initiative is a global hub for collaborations addressing challenges across the field of space weather.

S: Space weather origins at the Sun	H: Heliosphere variability	G: Coupled geospace system	Impacts
S1: Long-term solar variability	H1: Heliospheric magnetic	G1: Geomagnetic environment	Climate
	neiù and solar winu		Electric power systems/GICs
S2: Ambient solar magnetic field, heating and spectral irradiance	H2: CME structure, evolution and propagation through heliosphere	G2a: Atmosphere variability	Satellite/debris drag
S3: Solar eruptions	H3: Radiation environment in heliosphere	G2b: Ionosphere variability	Navigation/ Communications
	H4: Space weather at other planets/planetary bodies	G3: Near-Earth radiation and plasma environment	(Aero)space assets functions
Overarching Activities:			Exploration
Assessment Information Architecture Data Utilization Education/Outreach			

Each Cluster has at least one team on predictive capabilities assessment with CCMC involvement

Game-Changing Partnerships

Utilizing Shared Proving Grounds

- NASA/CCMC-NOAA/SWPC on R2O2R transition pipeline
 - Utilized shared cloud environment to promote secure and convenient collaboration between operational and research teams.
 - Initially set up to mirror the operational environment as closely as possible.
 - Ongoing project: Implementation and Evaluation of Modeling Suite for ICAO
 - Bi-weekly tag-ups

T. Tsui, C. Didigu

- NASA CCMC-SRAG on Integrated Solar Energetic Proton (ISEP) project
 - Identify and evaluate new models
 - Develop tailored ISEP Alert/Warning Scoreboard Software
 - Implement these capabilities within CCMC as a non-operational prototype
 - Transition capabilities to M2M office for prototyping by M2M analysts and support of NASA SRAG (NASA in-house R2O2R pipeline)
 - CCMC and SRAG work as one team, weekly tag-ups, coordinated hiring_

L. Mays, J. Jones

CCMC & NOAA SWPC Collaborations

• 20-year partnership since CCMC establishment.

Major successes:

- Demonstrated potential of Enlil for operational forecasting (2006 2009)
- Geospace model transition to operations at NOAA/SWPC (2013 2015)
- NASA-NOAA space weather MOU on space weather modeling capabilities: MOU Annex to validate model upgrades (2017 - 2020)

NOAA SWPC / CCMC MOU Annex **CME** Arrival Time

- Tested if model upgrades improve CME arrival time prediction
- CCMC performed and analyzed over 1200 simulations
- Result: ADAPT and timedependent driven simulations decrease CME arrival times errors by 6 hours for GONG zero-point corrected inputs.
- Final report was delivered in May 2020

CCMC performed over 1200 simulation variations:

CCMC-SWPC R2O2R Pipeline

Research to Operations (R2O) at CCMC: Real-Time Model onboarding and synchronization

Real-time/Continuous Run Model onboarding:

Lead: Chinwe Didigu

Continuous Integration and Deployment (CI/CD) System at CCMC:

CI/CD is a software development practice that enforces the automation of building, testing, and deployment of software.

https://ccmc.gsfc.nasa.gov/scoreboards/

https://ccmc.gsfc.nasa.gov/challenges/sep.php

 Planning for the SEP Scoreboard started in 2016 - led by Mark Dierckxsens, Ian Richardson, Mike Marsh, and Leila Mays

- Builds upon the flare scoreboard and CME arrival time scoreboard
- Automated system: CCMC runs the models or model developers can routinely upload their predictions to an anonymous ftp.
- Forecast data is parsed and stored in a database which is accessible to anyone via an API

SEP Scoreboard: CCMC R2O Collaboration with NASA Johnson Space Center SRAG

 2018: Beginning of ISEP project between CCMC and NASA Space Radiation Analysis Group (SRAG) to transition research Solar Energetic Particle models along the R2O pipeline.

- Project goals:
 - identify, transition, and evaluate new models (R2O)
 - develop software tailored for SRAG
 - implement these capabilities within CCMC as a prototype.
- CCMC has transitioned 6+ real-time models and built the SEP Scoreboard application
- The Scoreboard is already in use by SRAG for ISS support, and will be used for Artemis support by SRAG and M2M

CCMC Staff focused on R2O/ISEP/ACE Proving Grounds/Real-time Runs

- Masha Kuznetsova (CCMC Director)
- Leila Mays (CCMC Deputy, CCMC ISEP project lead, CCMC Helio/SEP Scientist)
- Joycelyn Jones (Scoreboard Software Developer)
- Community **Chinwe Didigu** (Real-time Runs Software Developer, ACE, ISEP)
- Aleksandre Taktakishvili (CCMC Solar/Helio Scientist, ISEP)
- **Tina Tsui** (CCMC Cloud Infrastructure and Model Onboarding Lead)
- **Peter MacNeice** (CCMC Solar/Helio Scientist, ISEP connectivity models)
- **Chiu Wiegand** (CCMC Lead Software Developer, iSWA, DONKI)
- **Rick Mullinix** (CCMC Software Developer, iSWA, Flare Scoreboard)
- **Claudio Corti** (CCMC Helio/SEP Scientist)
- **Chris Light** (CCMC Helio/SEP Scientist)
- **Yihua Zheng** (CCMC Radiation/Inner Magnetosphere Scientist)
- **CCMC Sys Admin team** (Poly Manessis, Corey Bettenhausen, Sarabjit Bakshi, Kiran Patel)
- Consulting from **GSFC SMCE** Science Managed Cloud **Environment staff**

CCMC Collaborations with SRAG and M2M Staff for the ISEP project

SRAG (ISEP project)

- Eddie Semones (SRAG lead)
- Kerry Lee (SRAG operations lead)
- Janet Barzilla (ISEP project lead, Console operator)
- Steve Johnson (Console Operator, SEP models)
- Katie Whitman (Validation Lead)
- Tilaye Asfaw (MagPy lead)
- Phil Quinn (Console Operator, SEP models)
- Clayton Allison (SEP models)
- Ricky Egeland (Console Operator, SEP models)
- Michael Cook (Console Operator)

NASA Langley (ISEP project)

• Chris Mertens (Radiation models)

M2M (ISEP project)

- Yari Collado-Vega (M2M Director)
- Anna Chulaki (Deputy)
- Michelangelo Romano
- Mary Keenan
- Bob Loper
- Carina Alden
- Mary Aronne
- Mattie Anastopulos
- Chris Stubenrauch
- Cloud Consultant

AFRL SFS ASPECS/FORSPEF GSU MAG4 (Falconer) SPRINTS SWPC UK Met Office

Physics based

WSA-ENLIL+EPREM (Odstricil, UNH) ZEUS+iPATH (Li)

SWMF+iPATH (Li, Jin) PARADISE (EUHFORIA)

WSA-ENLIL+SEPMOD (Luhmann)

SPARX (Dalla, Marsh) STAT: MAS+EPREM (PSI and UNH) SWMF M-FLAMPA (UMich) Zhang Model (FIT)

SEP Models in the Community

Flare: AFRL SFS COMESEP SEPForecast (BIRA) SPARX (Dalla, Marsh)

Flare and/or CME: COMESEP SEPForecast ASPECS/FORSPEF (NOA) GSU SOLPENCO (Arans)

Flare and proton intensity: UMASEP (Núñez) Boubrahimi model Solar Event Triggered

Electron intensity: HESPERIA REleASE

CME: SEPSTER, SEPSTER2D (Richardson, Bruno) MLSO K-Cor (St. Cyr)

Flare, Radio, H-alpha: SWPC PPM

Flare, Radio: ESPERTA (Laurenza)

Model in ROR /onboarding

Continuous/RT Runs - SEP Scoreboard

More in Katie's talk in this session and her paper: Whitman et al. 2022 Adv Space Res -SEP models review paper recently submitted to COSPAR Roadmap special issue.

SEP Scoreboard Goals

- Uniform JSON input format and scoreboard displays so multiple models can be viewed and compared together
- Displays should be easy for space weather operators to understand and take action on, but contain all necessary information

SEP Forecast Types

For different energy ranges/thresholds models may forecast:

- Continuous timeseries of the probability of a threshold crossing
- Continuous intensity timeseries
- Peak intensity for event
- Peak intensity over the next x hours
- Threshold crossing

SEP Scoreboard Displays

Displays have been built for multiple forecast types:

Probability app:

 probability heat map and time series (MAG4, SWPC, ASPECS, GSU, SPRINTS) <u>https://sep.ccmc.gsfc.nasa.gov/probability/</u>

Intensity app:

- intensity heat map (SEPSTER, UMASEP, SEPMOD, STAT, ASPECS, IPATH)
- intensity time series (RELEASE, SEPMOD, UMASEP, STAT, ASPECS, iPATH) <u>https://sep.ccmc.gsfc.nasa.gov/intensity/</u>

All Clear app:

• all clear forecast heat map (all models)

https://sep.ccmc.gsfc.nasa.gov/allclear/

SEP Scoreboard: Probability App

Shows the likelihood of an SEP Event within the

next 24 hours with predictions from

- NOAA-SWPC's 3-Day Forecast
- the MAG4 family of models
- SAWS-ASPECS
- NCAR/HAO MLSO/K-Coronagraph observations
- NextGen Federal Systems' SPRINTS Post-**Eruptive forecasts**

Features include:

- Real-Time automatic refreshing
- Simulated real-time display for past events
- User-configurable time series
- Listing of models available, with their last submission time, and indication if the data is out-of-date
- Links to more information about the models

SWPC Day 3 (future only): > 10 MeV > 10 pfu

SEP Scoreboard: Intensity App

Proton All Clear Forecasts:

2022-04-03 00:00 UT

Models shown include:

- SEPSTER
- **HESPERIA RELEASE**
- UMASEP
- STAT
- SEPSTER2D
- WSA-ENLIL+SEPMOD
- SAWS-ASPECS

Coming Soon:

NCAR/HAO MLSO/K-Coronagraph observations

Features include:

- Probability scoreboard features, plus
- Links to input data for some models' forecasts
- More user controls

https://sep.ccmc.gsfc.nasa.gov/intensity/

SEP Scoreboard: All Clear App

https://sep.ccmc.gsfc.nasa.gov/allclear/

NASA in-house R2O2R Pipeline:

CCMC support of human exploration

Summary: SEP Scoreboard

https://ccmc.gsfc.nasa.gov/scoreboards/sep/

- Models are being added to the scoreboard as part of a project with NASA Space Radiation Analysis Group; all models are welcome.
- The Scoreboard displays are available publicly on the web
- Everyone in the community is welcome to participate!
 - Models that run in real-time: provide model outputs to the scoreboard via ftp
 - Models that run in historical mode/for science studies: provide results and participate in the ISWAT SEP Validation Team activities

Comprehensive Assessment of Models and Events based on Library tools

MCALmericalDuput/WIA/Westord 1/PredictedTola/WindDuput/DD

Thank you & feel free to contact me with questions!

m.leila.mays@nasa.gov

Supplemental slides

Demo Screenshots: Probability Time Series

1.0

10.0

13.0

> 10 pfu

SWPC Day 1

MAG4_LOS_d

MAG4_HARP

MAG4_HARP_HMI

MACA LIADD

Refresh Plots

> 10 MeV > 100 MeV

> 1 pfu

20

0

of

Probability

Refresh Plots

SWPC Alerts

100

100

80

60

40

20

All Clear

No Data

00:00

Sep 9, 2017

× •

4 days of data

Refresh Plots

* 🛠 🛧 **S**1

> 10 MeV > 10 pfu

> 10 MeV > 10 pfu

Refresh Plots

Refresh Plots

Probability of Crossing Threshold (%)

-1 week -1 day -1 hour 2021-10-09 18:00 Refresh Plots +1 hour +1 day +1 week Too

Demo Screenshots: Intensity Time Series

(shown in simulated real-time mode)

-1 week -1 day -1 hour 2017-09-05 00:15 +1 hour +1 da

Refresh Plots

+1 hour | +1 day | +1 week | Today

Refresh Plots

pfu

2017-09-0502:00 UT

10⁶

Proton Intensity Forecasts:

GOES

SEPMOD

SEPSTER

SEPSTER2D

UMASEP

Refresh Plots

selected date/time: 2017-09-05 02:00 UT

SWPC Alerts

pfu

300

clear

no data

10

10⁻²

.....

175.0 - 315.0 MeV

00:00

GOES

> 10 MeV

12:00

00:00

> 30 MeV

12:00

GOES:

> 50 MeV

00:00

> 100 MeV

GOES:

12:00

15.8 - 39.8 MeV

00:00

HESPERIA REleASE ACE 60-min:

12:00

12:00

ACE Electron:

10³

Proton All Clear Forecasts:

± 9.2

> 10 MeV

2017-09-05 02:00 UT

clear

no dat

Clear

> 100 MeV

> 50 MeV

> 100 MeV

15.8 - 39.8 MeV

selected date/time: 2017-09-05 02:00 UT 0 + 1111 **Proton Intensity Forecasts:** SEPMOD (DONKI) >10.0 MeV SWPC Alerts 163.8 pfu 2017-09-05 07:15:00 2017-09-0502:00 UT Additional Information (URL) for Selected Point or All Clear Box: peak intensity max: None peak intensity onset: 163.8 pfu 10³ peak intensity ESP: None pfu pfu https://webtools.ccmc.gsfc.nasa.gov/DONKI/view/WSA-ENLIL/12988/1 10⁶ 300 issued at 2017-09-05 01:38:00 26.6 0.08 GOES prediction window duration: 7d Ohr 10⁵ 200 start: 2017-09-04 00:00:00 end: 2017-09-11 00:02:00 threshold crossing onset: 2017-09-05 02:15:00 (0.001 pfu) 10⁴ 100 10² Event Length: 163.8 2.765 SEPMOD 10³ 50 start: 2017-09-05 02:15:00 end: 2017-09-05 07:15:00 threshold: 0.001 pfu 10² 10 Fluence: 76031400.0 cm⁻² s)⁻¹ 10¹ SL Input CME parameters: 14.2 0.14 SEPSTER 10¹ (cm² start time: hw: lon: lat: time@height 21.5 Rs: speed: 46° -10° 2017-09-04 22:38:00 2017-09-04 20:36:00 1550 km/s 10° 10⁰ 10⁻¹ Proton Intensity 10-1 10-2 0.27 SEPSTER2D 103.8 10-2 10-3 10⁰ not clo not clear 39.8 clear clear UMASEP Clear ± 9.2 no dai no data 10 > 10 MeV > 100 MeV Proton All Clear Forecasts: 10-2 2017-09-05 02:00 UT 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 HESPERIA RELEASE ACE 60-min: ACE Electron: GOES: GOES: GOES

175.0 - 315.0 MeV

Refresh Plots

pfu 10⁶

10⁵

10⁴

10³

174.0

588.2

GOES

SEPMOD

-1 week -1 day -1 hour 2017-09-07 02:00 +1 hour +1 day +1 week Today

Refresh Plots

selected date/time: 2017-09-07 02:00 UT **Proton Intensity Forecasts:** SWPC Alerts * 2017-09-0702:00 UT \bigstar \bigstar $\stackrel{\frown}{\sim}$ \bigstar 10⁴ pfu 300 0.09 200 10³ 100 7.564 50 10 10² s)⁻¹ SL 0.04

Proton All Clear Forecasts:

2017-09-07 02:00 UT

-1 week -1 day -1 hour 2017-09-10 16:20 +1 hour +1 day +1 week Today

Refresh Plots

Today

-1 week -1 day -1 hour 2017-09-10 16:31 +1 hour +1 day +1 week Today Refresh Plots

Refresh Plots

CCM

-1 week -1 day -1 hour 2017-09-10 19:00 +1 hour +1 day +1 week Today

Refresh Plots

Refresh Plots

selected date/time: 2017-09-10 20:00 UT Proton Intensity Forecasts: SWPC Alerts \bigstar 2017-09-1(20:00 UT 10⁴ pfu **S**1 10⁶ 300 100@1 45.7 10⁵ 200 1 10³ 10⁴ 100

Proton All Clear Forecasts:

2017-09-10 20:00 UT

GOES

SEPMOD

SEPSTER

SEPSTER2D

UMASEP

lat: time@height 21.5 Rs:

2017-09-10 18:01:00

12:00

18:00

00:00

Sep 12, 2017

Refresh Plots

selected date/time: 2017-09-11 01:00 UT 0 + ilil **Proton Intensity Forecasts:** SWPC Alerts 2017-09-1101:00 UT 10⁴ pfu pfu **S**1 10⁶ 300 100@1 58.9 1120.0 10⁵ 200 10³ 10⁴ 100 35.4 2345.0 10³ 50 10² s)⁻¹ 10² 10 SEPMOD (DONKI) >10.0 MeV 1.195 pfu SL 2017-09-11 17:25:04 10¹ Proton Intensity (cm² 2330.0 23.3 peak intensity max: None peak intensity onset: 2345.0 pfu 10⁰ 10-1 peak intensity ESP: None 10¹ issued at 2017-09-10 19:48:00 **10**⁻¹ 10⁻² prediction window duration: 7d 0hr 22.24 2066.0 start: 2017-09-10 00:10:00 10⁻² 10-3 end: 2017-09-17 00:13:00 threshold crossing onset: 2017-09-10 18:55:04 (0.001 pfu) not clo not clear Event Length: clear clear 2321.1 start: 2017-09-10 18:55:04 In Event end: 2017-09-10 23:55:00 ± 533.9 threshold: 0.001 pfu no dat no data Fluence: 367939000.0 cm⁻² > 10 MeV > 100 MeV

Input CME parameters:

2017-09-10 16:09:00

18:00

speed:

1670 km/s

00:00

Sep 11, 2017

lon:

83°

-8°

06:00

hw:

_ ___

63°

start time:

1)

12:00

10⁻² 00 00

m

06:00

Sep 10, 2017

Proton All Clear Forecasts:

2017-09-11 01:00 UT

-1 week -1 day -1 hour 2017-09-11 01:00 +1 hour +1 day +1 week

Refresh Plots

