Simulation of SEPs in the heliosphere with SWMF/AMPS

Valeriy Tenishev

Adaptive Mesh Particle Simulator (AMPS)

COLLEGE OF ENGINEERING CLIMATE AND SPACE SCIENCES AND ENGINEERING UNIVERSITY OF MICHIGAN

Adaptive Mesh Particle Simulator (AMPS)

Space Weather Modeling Framework

AMPS in CCMC

				FAQ 0	Contact	÷
Community Coordina	ted Modeling Center		Search		Q	
).		
About \checkmark Models \checkmark Simulation Services \checkmark	Validation \checkmark Community Support \sim	Space W	leather ~ T	ools		

• Welcome to the new CCMC website!

Please note that some pages may have moved during the migration. If you experience any issues with the new website, please reach out to <u>gsfc-ccmc-support@lists.hq.nasa.gov</u>.

Home > Model Catalog	Last Updated: 06/06/2022		
AMPS	Sections in this page		
Version: 2016	Inputs		
→ Runs-on-Request	Outputs		
AMPS: Trajectories (position, velocity) of individual particles inserted into	Figures		
completed global magnetosphere simulation.	Domains		

COLLEGE OF ENGINEERING CLIMATE AND SPACE SCIENCES AND ENGINEERING UNIVERSITY OF MICHIGAN

SEPs in AMPS

A user can select:

- 1. Parker or Focused Transports equation
- 2. 3D or magnetic field line (SWMF, Parker spiral)
- 3. Turbulence model (SWMF/AWSOM, $\delta B = f(B)$)
- 4. Diffusion coefficient
- 5. Seed population, injection efficiency
- 6. Background solar wind model

3D vs field line transport

Transport in 3D:

100

50

-50

-100

z [R_{sun}]

- 1. Transport and acceleration of SEPs and GCRs
- 2. Time-dependent MHD parameters:

Transport along magnetic field lines:

- 1. Transport and acceleration of SEPs
- 2. Time-dependent topology and MHD parameters: SWMF/M-FLAMPA

SEPs in AMPS: workflow

SEPs in AMPS: Current status

SEPs in AMPS: Current status

• SEPs in AMPS:

- 1. Magnetic field lines: 1.05 Rsun -> 1 AU and further
- 2. Run-time coupling SWMF/SC, SWMF/IH, SWMG/M-FLAMPA, and SWMF/AMPS
- 3. SEPs in geospace

• GCRs in AMPS:

- 1. We experiment with the domain size of 5 AU
- 2. Drift and diffusion included

• All in one package:

- 1. SWMF/AMPS: SEPs, GCRs in the heliosphere and geospace
- 2. SWMF/SC, SWMF/IH, SWMF/GM, SWMF/M-FLAMPA

