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Although developed for a FAC model, the magnetic potentials have been even more
useful, in combination with the electric potentials, to obtain the Poynting flux

J) = Vzl///,u AB=1xVy
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Poynting flux from W05 model compared with change in average exospheric
temperature, derived from CHAMP/GRACE densities
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The AT, prediction technique:

= 2500 ,
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Saturation curve applied to heating

NO(t .,)= NO(t, )1 — A%NO )+ YH, At

Y =2.5-10" (units/GW-min)
Tyvo = 28.0 (hours)

H, is total Joule heating/Poynting flux from W05 model, with additional

saturation applied. All constants (except Y) obtained by fitting five years
of H, with CHAMP and GRACE measurements of AT,

A program that does this calculation has been delivered to the CCMC.




Background Tc in JB2008 (From EUV flux)
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Correlation coefficients are on the order of 0.9 for years 2002-2006 !
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(a) W05 Model Heating

(b) W05 Heating Prediction of ATc
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New model for prediction of geomagnetic perturbations

Reference: Weimer, D. R. (2013), An empirical model of ground-level geomagnetic
perturbations, Space Weather, 11, 107—120, doi:10.1002/swe.20030

Uses data from >140
magnetometer stations
in Northern
hemisphere, over an
8-year period
(1998-2005), solar
wind & IMF, and F1o.7.

Effects of conductivity
variations and
induced, underground
currents are implicitly
iIncluded.
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Example of processed data, spanning one month
(=13,000 of these were examined for quality control)
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AB North-South

AB East-West AB Vertical

Model results for
all three vector
components of
AB, with 8 nT IMF
at four clock angle
orientations.
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Results are
consistent with
prior models.
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8 AMRRAARRS AARRAARAS AARRANANS 1 || The data are divided into 29 bins, sorted
7L E according to IMF magnitude. The width of

: : each bin increased above 9 nT, yet there are
few samples in the highest bins.

Model coefficients are derived using a least-
: : error fit for each bin, including an over-lap of
3k - data from the adjacent bins.

Sample Counts / 10,000
N
|
|

: : Each vector component is fit separately, using
1F . spherical harmonics on a 90° cap, in corrected
: ] geomagnetic apex coordinates.
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The model does very well at prediction of AB levels, not so well
ont

he superposed and random, higher frequency variations.

Substorms are also not modeled.
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Incidental Note About Metrics

Presently used metrics for dB/dt and Regional-K both ignore the sign of
AB, as well as overall agreement with AB level:

dB 1 di = |(dB, 1dr)’ +(aB, 1dr)

K is calculated from the maximum “Range” of AB in the two horizontal
directions, over three hours =

max[(ABx,max-ABx,min), (ABy,max-ABy,min)]

As a result, both metrics can result in “good,” high scores for
predictions of AB having signs opposite to the actual AB, or very wrong
magnitudes, as these metrics only test changes in AB during certain
time intervals, and not the level.

With the present metrics for dB/dt and Regional-K, it may be possible
to do just as well with output from a pseudo-random noise generator,
that is added to the more smoothly varying AB prediction, scaled to the
predicted level.
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Real-time maps are shown at http://mist.ni : weimerGeoma

Operating continuously since 2011; plots archived since Sept. 2012
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http://mist.nianet.org/weimerGeomag.html

Minimum and Maximum North-South Magnetic Perturbations

Recent addition: Daily

summary plots, at
http://mist.nianet.org/
weimerDaily.html
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Delta-B Min/Max (nT)

Includes min/max AB-North,
polar cap potential drop, total
heating, and real-time
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Future models in development:
New FAC model, using data from
magnetometers on Oersted,

CHAMP, and Swarm.

New thermosphere model
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http://mist.nianet.org/weimerDaily.html

Example of Global Map from CHAMP and GRACE data
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Wavelet Filtering Applied to Same Data, Compared with JB2008
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Using the HEALPIx Grid for Mapping of Exospheric Temperatures

e HEALPIx: Hierarchical Equal Area isolLatitude Pixelization of a sphere.

e Each pixel covers the same surface area as every other pixel.

¢ Pixel centers located on a discrete number of rings of constant latitude.
¢ Developed within the astrophysics community for all-sky mapping.

¢ Extensive toolset for analysis, including (spherical) wavelet transforms.
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n=8, 768 pixels

n=2, 48 pixels _
n=4, 192 pixels -
Progressively higher resolutions




Appendix A: Energy budget of the thermosphere

The total energy content of the thermosphere is proportional to ATc. Burke [2008]
found that a 1°K increase in ATc raises the total energy in the thermosphere
above 100 km altitude by 1.01-107+ Joules.

AT (1,.,)= AT, (1, )(1= 817 )+ BH, A

B=69-10"" (°K/GW-min)
7 =14.6 (hours)—0.281 NO

NO(t )= NO(t )1-At +vH At
(,.) = NO(t, X AM) YH,

y=2.5-10" (units/GW-min)

Tyvo = 28.0 (hours)

With b equal to 6.9-10-4 °K/GW/min, an output of 362 GW from the W05
model over a period of 4 min is needed to raise the Tc temperature by 1°K.
A heat input of 362 GW during a 4 min interval amounts to 0.869-104 J,
which is just slightly under the 1.01-107+ Joule figure obtained by Burke

[2008] for the change in energy. The particle precipitation can account for
the other 14%.



