CME Scorecard

Operational specification and forecasting advances for Dst

CCMC Workshop 2014
April 3, 2014

W. Kent Tobiska, Ramkumar Bala, Bruce Bowman, D. Bouwer, J. Bailey, Delores Knipp, W.J. Burke, M.P. Hagan, J. Gannon

Areas of ongoing improvements for operational Dst

Dst forecasting issues

- Customer-driven forecasts
- Operational systems
 - “Stream A” primary forecasts (ENLIL/Rice)
 - “Stream B” backup forecasts (Anemomilos)
- Metrics & CCMC CME Scorecard
1. Customer-driven forecasting

- USAF Space Command requires operational Dst to drive JB2008 thermospheric density model
- Fully redundant systems is a customer requirement:
 ✓ Facilities
 ✓ Servers
 ✓ Algorithms
 ✓ Input data stream sources
 ✓ Output data stream indices
CME Scorecard

SET Facilities and Servers

Denver USAF support servers

Logan USAF support servers

Algorithms & Data streams

Algorithm and data stream architecture

Data streams upgrades

2. Operational Dst status

- Primary (stream “A”): ENLIL/Rice Dst forecasts
- Backup (stream “B”): Anemomilos Dst forecasts
- http://sol.spacenvironment.net/~sam_ops/index.html
CME Scorecard

Operational Dst requirement: -48 to +72 hours with 3-hour granularity, 3-hour latency

Operational goal achieved: redundant Dst, ±6-days with 1-hour granularity and 1-hour latency

ENLIL/Rice Prime Dst Forecast and ACE Comparison

- ACE near-realtime predictions are plotted here in red
- http://mms.rice.edu/realtime/forecast.html
- ENLIL/Rice models under predict but largely in line with the trend and are within acceptable range
- Magnetospheric activity on the New Year’s day is well captured

Credit: R. Bala
CME Scorecard

ENLIL/Rice Prime and Anemomilos Secondary

Dst ADVISORY, 04/03 15:00Z, peak 04/05 13:00Z, moderate impact -158nT, NOAA G3, 750k/s, #spacewx http://bit.ly/P8bZX3
\begin{itemize}
\item **Anemomilos** is the Greek word for “windmill”
\item The data-driven deterministic algorithm uses 3 solar observables to identify geoeffective events: \url{http://sol.spacenvironment.net/~sam_ops/index.html}
\item It has a 15-minute cadence, 1-hour time granularity, 144-hour prediction window (+6 days), and 1-hour latency
\item Most flare events above a certain irradiance threshold, occurring within defined solar longitude/latitude regions and having sufficient liftoff velocity of ejected material, will produce a geoeffective Dst perturbation
\end{itemize}

Tobiska et al. \url{http://spacewx.com} \textit{SpaceWeather app}
Anemomilos Basis

Three solar observables are used for operational Dst forecasting: flare magnitude, integrated flare irradiance, and event location

- Magnitude is a proxy for ejecta quantity (mass) and, combined with speed derived from the integrated flare irradiance, represents the kinetic energy
- Speed is estimated as line-of-sight velocity for events within 45° radial of solar disk center
- Solar disk, not limb, observable features are used for predictive techniques based on SDO/EVE/SAM centroid of flare event
CME Scorecard

Anemomilos geoeffectiveness of location

Occurrence of Dst vs Xhf in solar latitude & longitude (25 months)

- 2001 (Jan-Jul), 2005 (Mar-Sep), 2011-2012 (Dec-Nov)

Resulting Dst event size can be sorted by Xhf size and flare longitude/latitude

3. Metrics & CME Scorecard

- Metrics – in progress (skill score)
- CME Scorecard value to developer
 - Enables comparison with other forecast methods for identifying strengths and weaknesses
 - Allows a consistent cross-comparison for many methods
 - Enables potential users to identify capabilities of methods
- CME Scorecard suggestions for upgrades
 - Automated download of events from developer sites
 - Skill score table