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Computation Introduction Code generation

Computer performance keeps growing exponentially
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Computation Introduction Code generation

Moore’s Law is alive and well, but...
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single-core performance has saturated!
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Heterogeneous computing

multi-core

OS runs on any core host CPU
main code on any core host CPU
comput. kernels on any core GPGPU MP
memory architecture main memory main memory main memory
caches per-SPU local store ~ GPGPU memory
shared memory
data movement transparent DMA for moving data explicit
SIMD explicit explicit automatic
threads few no (?) many
efficient programming hard hard hard
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Computation Introduction Code generation

Heterogeneous computing

Twelve Ways to Fool the Masses When Giving
Performance Results on Parallel Computers
David H. Bailey
June 11, 1991
Ref: Supercomputing Review, Aug. 1991, pg. 54--55

6. Compare your results against scalar, unoptimized code on Crays.

It really impresses the audience when you can state that your code runs several times
faster than a Cray, currently the world's dominant supercomputer. Unfortunately, with a
little tuning many applications run quite fast on Crays. Therefore you must be carefu.l not
to do any tuning on the Cray code. Do not insert vectorization directives, and if you find
any, remove them. In extreme cases it may be necessary to disable all vectorization with
a command line flag. Also, Crays often run much slower with bank conflicts, so be sure
that your Cray code accesses data with large, power-of-two strides whenever possible. It
is also important to avoid multitasking and autotasking on Crays --- imply in your paper
that the one processor Cray performance rates you are comparing against represent the
full potential of a $25 million Cray system.
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Automatic code generation

Lesson learned from porting OpenGGCM to the Cell processor:

Programming heterogeneous architectures and achieving high
performance is hard.

= Just let the computer do the work.

Automatic code generation lets you input your finite-difference /
finite-volume equations in near symbolic form as a stencil
computation, and then does all the work the generate efficient
code for Cell / SSE2 / GPUs.

Example: dip = —V - (pV)

rhs_RHO = — Divg (ZIP (RHO, V))
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What does code generation do?

Example: 0;p V- (pV

V = 1./RHO * P
rhs_RHO = — Divg (ZIP (RHO, V))

FLD3(r, jx, jy, jz,RHO) =
(
—((0.5*(RHO( , 3x+0, Jy+0, §z+0) x
(PO (x, jx+1, jy+0, jz+0
RHO( ,jx+l,jy+0,jz+0
(PO (x, jx+0, jy+0, jz+0
HO(

)

) RHO (x, jx+1, jy+0, jz+0)) +

)

)
0.5% (Rl »Jx-1, jy+0, 3z+0)

)

)

)

)

RHO (x, 3x+0, jy+0, jz+0))) -
(PO (x, jx+0, jy+0, jz+0 RHO (x, jx+0, jy+0, jz+0)) +
RHO (x, jx+0, jy+0, jz+0
(PO (x, jx-1, jy+0, jz+0
(CRDOf (jx+1) - CRDOF (jx+0)
+

B N N A

RHO (%, jx-1, Jy+0, 3z+0)))) /
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Automatic code generation

Symbolic manipulation

Having the equations available in their natural (discretized) form
allows for easy symbolic manipulation, e.g. find non-zero
structure of the Jacobian, etc.

High performance

Conversion to actual computer code can automatically adapt to
geometry, parameters, hardware architectures to obtain optimal
performance.

Productivity

Only one version of the code needs to be maintained.
Changing the underlying equations (physics) and numerics is
simplified because they are abstracted out in
near-mathematical form from their actual implementation.
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Performance gains (SIMD, Cell)
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speed-up: 2.3x on multi-core, 200x (?!?) on the Cell (predictor)
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Performance gains (GPU, prelim)

ymaskn_f 57.964 11 5.26945
primvarl_f 206.048 11 18.7316
primbb_f 29.344 11 2.66764
zmaskn_f 47.821 11 4.34736
pushpred_f 1898.37 10 189.837 <-—
pushpred_b 222.927 11 20.2661 <-—
pushfluidl_0Ob 11.553 11 1.05027
pushfluidl_123b 60.427 11 5.49336
pushfluidl_4b 51.231 11 4.65736
bcec_xj_b 17.935 11 1.63045
yzmaskn_b 12.91 11 1.17364
calcel_b 59.634 11 5.42127
bpushl_b 8.982 11 0.81654
pushpred_b_all 355.949 10 35.5949

The generated GPU code achieves a speed-up of ~ 9.5 over
the original code on a nvidia Fermi card vs. intel i7 single core.
Considering this was achieved without any attempt at specific
GPU optimizations (e.g., using shared memory), that’s quite
promising.
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Parallel scalability
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parallel efficiency: 89% for 642 local problem, 69% for 32°.
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Magnetopause Uniform resistivity Hall MHD

Magnetopause Reconnection

Magnetospheric plasma is rather tenuous and collisionless, but
numerical models typically use resistive MHD.

@ How does resistive 3D reconnection scale in a global
code?

@ Do we observe the plasmoid instability in a global code?

OpenGGCM runs were performed at UNH, BATSRUS runs at
NASA’s CCMC (Community Coordinated Modeling Center).

Parameters:

solar wind: B, = —-5nT, vy = —400km/s,n=5cm™3
uniform resistivity: Lundquist number S = 500... 10000
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Time evolution of the magnetosphere pressure

(Loading...)
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Magnetopause with varying resistivity
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Magnetopause Uniform resistivity Hall MHD

Sweet-Parker scaling for electric field

Resistive Scaling of Subsolar peak nJ
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Magnetopause Uniform resistivity Hall MHD

Theoretical predictions of X-point and flow stagnation

point offset

X =X-line
1§ = Stagnation point
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Cassak, Shay 2007
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Magnetopause Uniform resistivity Hall MHD

Results vs. 2D Cassak-Shay theory

B and V Null Point Offsets vs. Theory
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Hall Reconnection

Loading ¢1.mp4
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Current sheet structure resistive vs Hall MHD

di=0 d; = 0.5Re
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Out-of-plane magnetic field resistive vs Hall MHD

di=0

d; = 0.5RE

| .
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Quadrupolar out-of-plane magnetic field with Hall
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Magnetopause Uniform resistivity Hall MHD

Hall MHD — Current density

Loading sw6c.mp4

d,‘ = 0.5HE, 5SP ~ 0.1 RE



Summary
Summary

@ Advances in computing capabilities allow unprecedented
opportunities (and challenges) for numerical modelling.

@ Automatic code generation is a promising approach to reap
benefits while avoiding some of the pain.

@ Reconnection in global magnetosphere models requires
improved models and poses many open questions.
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