NASA Robotic Missions: Feedback and Future Needs - ISS

TP

Joseph I Minow EV44/Natural Environments Branch NASA/Marshall Space Flight Center

6th CCMC Community Workshop Key Largo, FL, 16 – 20 January 2012

- MSFC's Environments Branch is an applied science organization utilizing space environment data, models for NASA program support:
 - Characterizing space environments and effects for space system design
 - Launch vehicle space weather constraints
 - On-orbit vehicle operations, science payload support
 - Development of laboratory test protocols for qualifying materials for use in space environments
 - Anomaly investigations
- Today's presentation gives examples of ISS space weather support activities
 - Introduction to data and model needs for NASA program support
 - ISS plasma instrumentation
 - Examples of data, model use for
 - EVA plasma hazard assessments (PVA charging)
 - ISS plasma interactions, payload science support
 - Anomaly investigations
 - Summary

Applied Space Environment Model, Data Needs

- Characterizing space environments for space system design
 - Historical data, environment models (empirical, physics based)
 - Effects models including surface and internal charging codes, radiation transport codes, single event upset rate calculations
- Launch vehicle space weather constraints
 - Requires data to verify current environment within launch constraint
 - Primarily used by NASA for solar proton launch constraints to protect launch vehicles
 - Evaluating options for establishing constraints for auroral, geostationary orbit charging environments (data? models?)
- On-orbit environments support for vehicle operations, science payloads
 - In-situ data preferred
 - Appropriate independent data (other satellites or ground based sensors) acceptable
 - Data constrained environment models
 - Unconstrained first principle physics models
 - Empirical models
- Anomaly investigations
 - In-situ measurements preferred
 - Measurements from independent spacecraft, ground based sensors acceptable if in-situ not available
 - Data constrained environment models

• ISS frame potential varies in low Earth orbit environment due to:

Current collection

- Current collection from ambient plasma
- 160 V US solar array
- Visiting vehicle (high voltage) solar arrays
- Operation of payloads that emit current sources
- Auroral electrons

Inductive potentials

- (vxB).•L due to motion across geomagnetic field
- E.• L due to ionospheric electric fields
- Hazards to vehicle and crew
 - ISS-EVA-305: long term degradation of thin dielectric surface thermal control coatings due to arcing ... EVA touch temp violations (eventually)
 - Hazard marginalized by test and analysis no controls needed
 - ISS-EVA-312: EVA electric shock
 - Hazard 1 Catastrophic at floating potentials more negative than -40V
 - Hazard 2 Critical to catastrophic at positive floating potentials (> 0V)
 - Hazard 3 critical to catastrophic ISS electrical power short through EVA crew to ground
 - Plasma is a secondary cause one circuit closure pathway

Voltage Range (Observed to Date)

- 0.1 to -0.5 volts -20 to -90 volts -10 volts +10 to +25 volts -20 volts

+/-40 volts few volts

ISS Plasma Hazard Management

ISS Program controls plasma hazards through a process of active potential control, operational mitigation strategies, environment monitoring and characterization, and probabilistic risk assessment

- Plasma Contactor Units (PCUs)
 - Provides active ISS "ground" by dissipating excess charge to space
 - Two redundant PCU units provides single fault failure tolerance, two required for EVA

- Manages solar array and magnetic induction charging
- Provides two fault tolerance
- Floating Potential Measurement Unit (FPMU)
 - Provides validated measurements of ISS floating potential and ionospheric Ne, Te along ISS orbit
 - Predict EVA charging hazards based on measurements before EVA

Boeing/SAIC Plasma Interaction Model (PIM)

- ISS charging model validated with FPMU data
- Predicts charging hazard severity and frequency of occurrence

joseph.i.minow@nasa.gov, CCMC Workshop, 19 Jan 2012

Floating Potential Measurement Unit (FPMU)

FPP: Floating Potential Probe

WLP: Wide-sweep Langmuir Probe

NLP: Narrow-sweep Langmuir Probe

PIP: Plasma Impedance Probe

FPP 10 cm 80 cm 150 cm NLP 130 cm WLP PIP **Electronics Box** TVCIC

<u>Role:</u>

- Validation of PIM
- Assess PV array variability
- Interpreting IRI predictions

Characterize ISS charging

Sensor	Measured Parameter	Rate (Hz)	Effective Range
FPP	V _F	128	-180 V to +180 V
WLP	N T _e V _F	1	10 ⁹ m ⁻³ to 5⋅10 ¹² m ⁻³ 500 K to ~10000 K -20 V to 80 V
NLP	N T _e V _F	1	10 ⁹ m ⁻³ to 5⋅10 ¹² m ⁻³ 500 K to ~10000 K -180V to +180 V
PIP	Ν	512	1.1·10 ¹⁰ m ⁻³ to 4·10 ¹² m ⁻³

[Wright et al., 2008; Barjatya et al., 2009]

NASA

Characterizing ISS Environments, Charging

Alternative Ne, Te Data and/or Model Sources

We have in-situ FPMU Ne, Te measurements along ISS orbit that we use for

- Assessing plasma hazards for charging before EVA's
- Characterizing ISS plasma environment for payloads, other science collaborations
- ...but we are interested in identifying independent Ne, Te data sources from both measurements and models appropriate for ISS altitudes
- FPMU data unavailable during EVA, docking, and other operations with higher Ku band video downlink priority
- Ku band downlink is real time so we lose data during gaps in ISS to TDRS downlink
 - Real time data, models may be useful to provide coverage during these periods
- FPMU operated on campaign basis (~25 to 30% of year)
 - Well validated models or alternate data sources can provide environment characterization data between FPMU runs
- Contingency planning in case of FPMU failure
 - Default to current "worst case" analysis for EVA planning...but that impacts ISS power availability
 - Alternative data, validated models could provide operations relief to power constraint

FPMU Data Unavailable During EVA

CCMC Real-time Ionosphere Ne, Te for ISS

Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics (CTIPe) Model

- CCMC implemented real time CTIPe model in spring 2010 (CTIPe_RT) with output specific for ISS orbit
- ISS ephemeris from GSFC/SSCWeb
- New record every 10 minutes gives
 90 minutes of data at 5 sec time steps

-70 min from file epoch to +20 min <

CTIPe_at_ISS_20100909_192000.txt 09/09/2010 07:01PM # Data printout from CCMC-simulation: version 1.1 # Data type: CTIP ionosphere/thermosphere # Run name: 2010-09 Missing data: -1.100E+12									
# fixed	dipole	tilt angl	es used: SM-GS	м:	0.00000 G	SM-GSE:	0.00000		
# Satellite Track: iss									
# Output	t data:	field wit	h 1x1081=1081	element	S				
#YYYYMM	DD HH M	IM Sec	lon lat	IP	N_e	N_O+	N_H+	T_i	T_e
# year 1	nonth da	y hms	[deg] [deg]	[km]	[m^-3]	[m^-3]	[m^-3]	[K]	[K]
2010 09	09 17 5	0.000	254.4 -9.250	351.5	7.522E+11	7.501E+11	2.108E+09	1125.	1828.
2010 09	09 17 5	0 5.000	254.6 -8.994	351.5	7.494E+11	7.473E+11	2.089E+09	1125.	1831.
2010 09	09 17 5	0 10.000	254.8 -8.738	351.4	7.465E+11	7.444E+11	2.069E+09	1125.	1834.
2010 09	09 17 5	0 15.000	254.9 -8.483	351.4	7.434E+11	7.414E+11	2.050E+09	1125.	1837.
2010 09	09 17 5	0 20.000	255.1 -8.227	351.3	7.402E+11	7.382E+11	2.030E+09	1124.	1840.
2010 09	09 17 5	0 25.000	255.3 -7.971	351.3	7.366E+11	7.346E+11	2.010E+09	1124.	1843.
2010 09	09 17 5	0 30.000	255.5 -7.715	351.2	7.312E+11	7.292E+11	1.989E+09	1123.	1844.
2010 09	09 17 5	0 35.000	255.7 -7.459	351.1	7.259E+11	7.239E+11	1.968E+09	1122.	1846.
2010 09	09 17 5	0 40.000	255.9 -7.203	351.1	7.205E+11	7.186E+11	1.947E+09	1120.	1848.
2010 09	09 17 5	0 45.000	256.1 -6.947	351.0	7.151E+11	7.132E+11	1.927E+09	1119.	1850.
(records deleted)									
2010 09	09 19 2	0.000	227.5 -14.02	352.8	3.634E+11	3.621E+11	1.289E+09	989.1	1710.

joseph.i.minow@nasa.gov, CCMC Workshop, 19 Jan 2012

Example CTIPe_RT Daily Output

CTIPe_RT output at CCMC:

Integrated Space Weather Analysis System (iSWA) http://iswa.gsfc.nasa.gov/iswa/iSWA.html

Anonymous ftp ftp://hanna.ccmc.gsfc.nasa.gov/

CTIPe Model Description: http://ccmc.gsfc.nasa.gov/models/modelinfo.php?mo del=CTIPe

MSFC is evaluating CTIPe_RT for possible ISS ops use:

- Periodically download text output files and process into daily data sets retaining the unique records
- Compare CTIPe_RT Ne, Te with measurements from FPMU

Good CTIPe_RT/FPMU Comparison

joseph.i.minow@nasa.gov, CCMC Workshop, 19 Jan 2012

Less Good CTIPe RT/FPMU Comparison

NASA

Characterizing High Latitude Charging Environment

- ISS environments teams are investigating variations in physics of eclipse exit charging
- CTIPe_RT model confirmed physical origin of the plasma depletions for charging events observed at high latitudes, allows us to predict periods for studying charging phenomenon

Auroral Charging

Auroral Charging

joseph.i.minow@nasa.gov, CCMC Workshop, 19 Jan 2012

Solar Activity and CME Monitoring

X-ray flare, type II radio emission, halo CME alerts

- NOAA/SWPC, CCMC, SIDC
- Models used to estimate shock arrival time
- NOAA/WSWPC, CCMC WSA-Enlil solar wind models
- CME transit time empirical models

ISS applications:

- Support FPMU campaigns to investigate auroral charging of vehicle
- Alert ISS crew (D. Pettit/Exp. 30) for auroral observation opportunities
- Space situational awareness for storm driven changes in solar array charging environments
 - EVA support
 - Anomaly investigations

December 2011 Shock Time Shock Speed Arrival Time (UTC)								
(UTC)	(km/s)	No Drag	Zhang	Gopalswamy	Wang			
024/00:54	520.	027/08:49	027/00:08	027/14:20	026/21:27			
024/09:18	600.	027/06:34	027/04:44	027/15:02	027/00:27			
024/14:30	500.	028/01:37	027/14:41	028/05:59	027/12:41			
025/01:24	480.	028/15:58	028/02:33	028/19:00	028/01:20			
025/20:54	770.	028/02:52	028/08:14	028/12:50	028/04:17			
026/12:09	721.	028/21:47	029/01:49	029/07:44	028/21:24			
027/04:54	728.	029/13:59	029/18:14	029/23:57	029/13:52			
Gopalswamy et al. 2000; Wang et al. 2002; Zhang et al. 2003								

21 Dec 2011 18:44:56 UTC

DoD Space Test Program Payload Support

Canary: USAF Academy (G. McHarg), JHU/APL

- Investigate ion interactions with ISS background plasma environment
- Target of opportunity to sample ram ions provided by ISS flight attitude when STS docked
- Correlate shifts in Canary energy spectrum, ion density with FPMU measured floating potential, ion density

Primary Arcing of Solar Cells at LEO (PASCAL) :

Lockheed Martin (J. Likar), Kyushu Inst Tech, JAXA

- Solar array arcing experiment
- Plasma diagnostics not included in package for evaluating current collection
- FPMU provides Ne, Te data for computing charging currents to solar cells biased to ≤ 300 volts

Remote Atmopshere and Ionospheric DetectionSystem

- (RAIDS): NRL (S. Budzien), Aerospace Corp., ONR
- UV/VIS remote sensing of airglow
- Compare RAIDS Ne(z) profiles retrieved from limb radiances with FPMU Ne(s) records at ISS altitude

FPMU data only available for limited campaign periods

• Alternative Ne, Te data source is desirable for full environment coverage for payload support when FPMU data not available

14:10 14:15 14:20 14:25 14:30 14:35 14:40 14:45 14:50 14:55 GMT Day 195

ISS Anomaly Investigations

Investigations of charging, plasma environments

- Russian GNC computer failure (2007)
- Soyuz pyrobolt failure (2008)
- S-band transmission interruptions (2011)
- PVCU MDM card fault required system reset (2011)

Anomalous ISS 160 volt solar array charging

- FPMU measurements demonstrate floating potential within program requirements
- Boeing/SAIC ISS charging code demonstrates charging within acceptable levels
- Ne(s) along ISS orbit reconstructed from COSMIC Ne(z) profiles demonstrates environment within nominal levels for typical PVA charging

Anomalous plasma environment

- FPMU measured Ne, Te within nominal range
- Ne(s) reconstructed from COSMIC constellation Ne(z) profiles demonstrates environment within flight history
- NOAA SWPC, NGDC records demonstrate low geomagnetic activity

ISS would benefit from additional ionospheric data sources or data constrained models providing Ne, Te along ISS orbit (e.g., GAIM, CTIPe update?)

- ISS Program currently using FPMU Ne, Te in-situ measurements to support operations and anomaly investigations
 - Working to acquire alternative data sources if FPMU is not available
- Work is progressing on CCMC tools for low Earth orbit ionosphere characterization
 - Validation against FPMU data required before model output can be used for ISS operational support
 - Continue comparing CTIP output during FPMU campaigns
 - Results to date have been useful in identifying ionospheric origins of high latitude charging environments
 - WSA-Enlil model very useful for predicting arrival times of CME shocks

Future needs:

- Incorporate environment constraints (F107, HPI, etc) used in model in CTIPe_RT output files
- Implement CTIPe_RT output for ISR, ionosonde sites
 - Provide additional data for validating CTIP output
 - Support validation of real time data to supplement FPMU output
- Implement assimilative ionosphere models (e.g., GAIM)
 - Models constrained by Ne, Te data better for operations support, anomaly investigations

- Solar activity/thermosphere density prediction and satellite torque/drag predictions for:
 - Mission planning and controllability/real-time operations
 - MM/OD environment evolution
- Meteor storm severity predictions for potential impact to vehicle, operations
- Role of solar/geomagnetic activity/thermosphere in managing ISS crew ionizing radiation dose exposure
- Monitor for changes in the south Atlantic anomaly altitude structure and geographic extent for crew IR dose management
- Ionospheric Ne, Te values along ISS orbit for characterizing ISS charging hazards, payload science support, and anomaly investigations:
 - Near real time Ne, Te data
 - Well validated real time model Ne, Te output
- ISS interaction with auroral particle precipitation
 - characterize magnitude of charging
 - determine if auroral forecasting is required to support EVA