ENLIL: Recent Enhancements

D. Odstrcil

CCMC Community Workshop, Key Largo, FL, January 25-29, 2010

Acknowledgements

Collaboration on code couplings with:

AFRL: Nick Arge CCMC: MacNeice, Sandro Taktakishvili CU/LASP: Michael Gehmeyr UCSD: Bernie Jackson, Paul Hick NOAA/SWPC: Chris Balch, Leslie Mayer, Vic Pizzo NRL: Arnaud Thernissien SAIC: Jon Linker, Zoran Mikic, Peter Riley UNH: Jimmy Raeder UCB: Steve Ledvina, Christina Lee, Janet Luhmann

This work has been supported in part by AFOSR/MURI, NASA/LWS, NASA/STEREO, NASA/HGI, NSF/CISM, and NSF/SHINE projects.

OUTLINE

- Driving Heliospheric Computations
- Space Weather Forecasting
- Launching of Hydrodynamic ICMEs
- Tracing of IMF and Interplanetary Shocks
- Heliospheric Mission Support

Driving Heliospheric Computations

Driving Heliospheric Computations

 Analytic, empirical, and numerical models and observational data can be used to drive ENLIL (green) by sharing data sets (grey) and using couplers (blue).

Driving by Analytic Models

Driving by WSA Model

Driving by MAS Model

Self-consistent end-to-end numerical simulation of space weather event (in progress)

Driving by In-Situ Observations

 Heliospheric computations can be driven by accurate in-situ observations of solar wind parameters

 This approach can be strictly applied only during times of radial alignment, and potentially important 3-D interactions are not accounted for

Prediction of the solar wind flow velocity (left) and proton number density (right) at Ulysses. Red dots show observations by Ulysses and a solid line shows results from 1-D MHD simulations driven by values observed at Earth.

Driving by UCSD/IPS Model

Space Weather Forecasting

Prediction of Solar Wind Streams

Prediction of Solar Wind Streams

2010-01-24

2010/200x60x180.a3b2.1-mp1umn1de=1.g15g0.2D10=01=24 2010=D1=25

Calibration of Ambient Solar Wind

Solar wind velocity and IMF lines at the inner boundary (21.5 or 30 Rs)

Radial profiles of the solar wind flow velocity for WSA and ENLIL

R

WSA model provides: Vr and Br
ENLIL further needs: N, T, and Bphi

ENLIL needs to modify MAS or WSA solar wind flow speeds at the models interface boundary.

Ambient Solar Wind Parameters

Basic Mode – Association with the Coronal Model and Resolution

Name	Title	Default	Range
cr	Carrington Rotation number	1922	1890 – present
resolution	Numerical grid resolution	low	low medium

Advanced Mode – Free Parameters at the Inner Boundary

Name	Title	Default	Range
vfast	Radial flow velocity of fast stream (km/s)	650.	600. – 700.
dfast	Number density of fast stream (cm ⁻³)	150.	100. – 200.
tfast	Temperature of fast stream (MK)	0.6	0.5 – 0.8
bfast	Radial magnetic field of fast stream (nT)	150.	100. – 200.
gamma	Ratio of specific heats	1.5	1.05 – 2.
xalpha	Fraction of alpha particles (rel. to protons)	0.	0. – 0.1
dvexp	Exponent in N V ^{dvexp} = const	2.	1. – 2.
nptot	=1 (=2) if P _{the} (P _{tot}) = const	1	1 2

Solar Wind – 2005 – MDI

Solar Wind – 2005 – MWO

Solar Wind – 2005 – MDI

Solar Wind – 2005 – NSO

Solar Wind - 2007 - CR2051

Solar Wind – 2007 – CR2052

Solar Wind – 2007 – CR2053

Solar Wind – 2007 – CR2054

Launching of Hydrodynamic ICMEs

May 12, 1997 Halo CME

Running difference images fitted by the cone model [Zhao et al., 2002]

Transient Disturbances

Modeling of the origin of CMEs is still in the research phases and it is not expected that real events can be routinely simulated in near future. Therefore, we have developed an intermediate modeling system which uses the WSA coronal maps, fitted coronagraph observations, specifies 3D ejecta, and drives 3D numerical code ENLIL.

Limb vs. Halo CME Speeds

Limb vs. Halo CME Speeds: 2008-02-04

Limb vs. Halo CME Speeds: 2008-02-04 **Cone Model STEREO Model** 2008-02-07 06:04:00 FORECAST = +3.25 days2008-02-07 06:01:35 FORECAST = +3.25 days🗢 Earth 🗢 Earth O Mercury Venus 🗢 Mars O Mercury • Venus 🗢 Mars 🗖 Messenger Stereo_A 🗖 Stereo_B 🗖 Messenger E Stereo_A Stereo_B 20_{W90}21 20_{W90}21 19 19 22 22 18 18 23 23 15 26 -26 14 --27 -<mark>27</mark> 0⁰ 13-1312 **6**90 **6**90 $R^2 N (cm^{-3})^8$ $R^2 N (cm^{-3})^8$ 6 IMF polarity IMF polarity 3D IMF line 20 30 40 50 20 30 3D IMF line 10 60 10 40 50 60

07dec/wsafr-cld/320x60x180.gong-2064-a1b2-sa1.4-mcp1um1mt-1.g15g

ICME – Hydrodynamic Models

2007-12-31

Latitude (deg)	-25
Longitude (deg)	-80
Width (deg)	79
Time (hh:mm)	04:55
Velocity (km/s)	972
Thickness (deg)	24
Gamma (deg)	0
Carrina (dog)	U

CONE MODEL		
Latitude (deg)	-25	
Longitude (deg)	-80	
Width (deg)	79	
Time (hh:mm)	04:55	
Velocity (km/s)	972	

2008 April 26 CME with Cone Model

2008-04-26 00:00:19

2008 April 26 CME with Rope Model

2008-04-26 00:00:19

2008—04—26 0.00 day

Limb vs. Halo CME Speeds: 2008-02-04

STEREO MODEL	
Latitude (deg)	-6.9
Longitude (deg)	-23.0
Width (deg)	60.5
R 12:52:20 (Rs)	16.4
R 13:22:20 (Rs)	18.6
Velocity (km/s)	859.0

CONE MODEL	
Latitude (deg)	-2.7
Longitude (deg)	-20.8
Width (deg)	65.0
R 12:52:20 (Rs)	17.1
R 13:22:20 (Rs)	19.4
Velocity (km/s)	316.1

Tracing of IMF and Interplanetary Shocks

Connectivity of Magnetic Field Line

Shock Detection Challenge

Global view

Detailed view

 IMF line connects geospace with an interplanetary shock under very large inclination angle because of: (1) spiralling IMF line and (2) bow-shaped shock front

Thus determination of shock parameters from MHD values stored along the IMF line is very difficult because many numerical grid points are used across the shock structure and pre- and post-shock values are at differing solar wind

Shock Detection Challenge

Tracing Nearby IMF Lines

Four additional four IMF lines are traced from geospace, offset +/- 2^o in latitude and longitude from the Earth location

Using 3-D Data

Shock front at t=t₁

Shock front at t=t₂

Geometrically fitted parameters:

- shock inclination
- shock speed

Together with the pre-shock solar wind parameters, these enable application of the Rankine-Hugoniot formulae to determine shock jump conditions (*Steve Ledvina, in progress*)

Interplanetary Shock Tracing

06dec09/480x60x180.gong-2050-a2b2-sa1.4-mcp1umn1de-1.g15q0d4

Interplanetary Shock Tracing

Heliospheric Mission Support

Messenger-Mercury Flyby – January 2008

Messenger-Mercury Flyby – January 2008

08jan/256x60x180.gong-2065-a2b2.4-mp1um1mt-1.g15q0

2008-07-25T00:11:3

Interplanetary Shock Tracing – Type II Radio Bursts

 Interplanetary shocks can generate radio emission (type Il radio bursts):

 $F_p(kHz) = 9 (N_e (cm^{-3}))^{1/2}$

 Inner heliosphere: dm & km wavelengths can be detected by spacecraft

Numerical simulations:

- Conditions for observed radio emissions
- On-fly adjustment of numerical predictions

(Coupling Issues)

STEREO Beacon Data – NASA CDF File Format

Old	cdf_varget,id_cdf,'Velocity_HGRTN',velocity,
New	cdf_varget,id_cdf,'Velocity_RTN',velocity,

Trajectories of Planets and Spacecraft – NASA HelioWeb Database

	YYYY DDD AU ELAT ELON HG_LAT HG_LON HGI_LON
Old	YEAR DAY RAD_AU HG_LAT HG_LON HGI_LON
New	YYYY DOY AU HG_LAT HG_LON HGI_LON
	YYYY DAY RAD_AU HGI_LAT HGI_LON