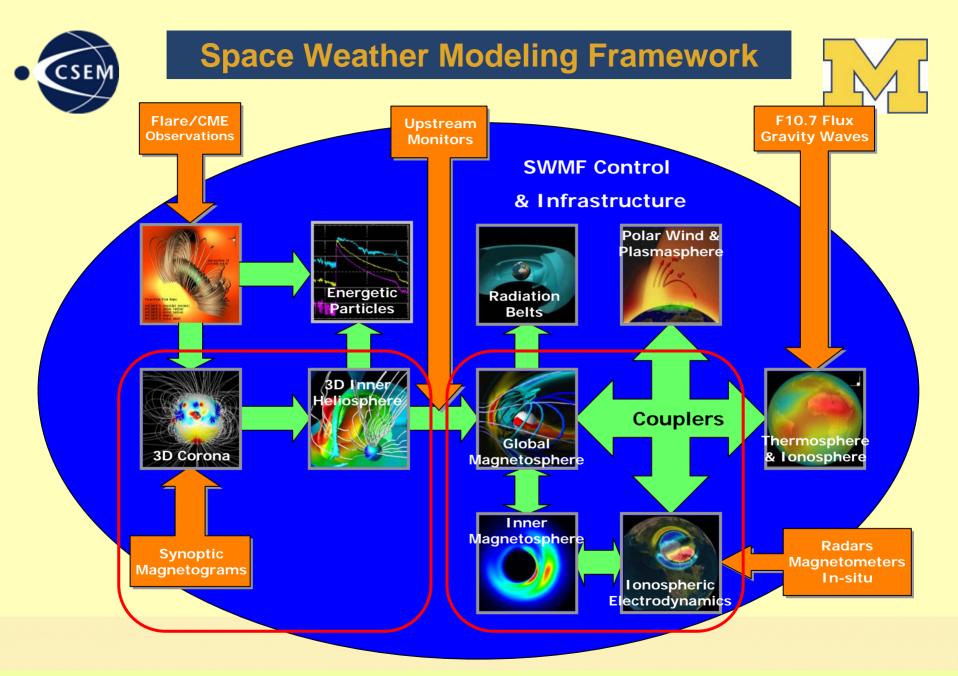


SWMF at the CCMC and Plans for the Future

Gábor Tóth

Center for Space Environment Modeling



Outline

Mew SWMF features

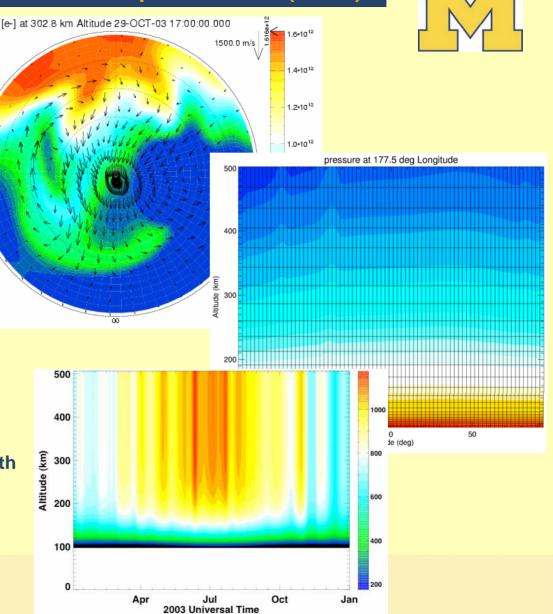
- Polar Wind Outflow Model (PWOM)
- Radiation Belt Models (RBE and SALAMMBO)
- Plasmasphere Model (DGCPM)
- Graphical User Interface
- Mew BATS-R-US features
 - Hall MHD
 - Multifluid MHD
 - Improved Roe solver and new HLLD solver
 - Son-gyrotropic resistivity model (by Masha)
- M Validation Efforts
- M Future deliveries to CCMC

Available at the CCMC as runs-for-request

Physics Models in SWMF

	Physics Domain	ID	Model(s)		
1.	Solar Corona	SC	BATS-R-US	S use	ed by CCMC
2.	Inner Heliosphere	IH	BATS-R-US	S	
3.	Global Magnetosphere	GM	BATS-R-US	5	
4.	Inner Magnetosphere	IM	RCM		
5.	Ionosphere Electrodynamics	IE	RIM		
6.	Solar Energetic Particles	SP	Kóta & FLA		at CCMC
7.	Eruptive Event Generator	EE	BATS-R-US	S	
8.	Upper Atmosphere	UA	GITM		
9.	Polar Wind	PW	PWOM	under development	
10.	Plasmasphere	PS	DGCPM		
11.	Radiation Belt	RB	RBE & SALAMMBO		

The Global lonosphere-Thermosphere Model (GITM)

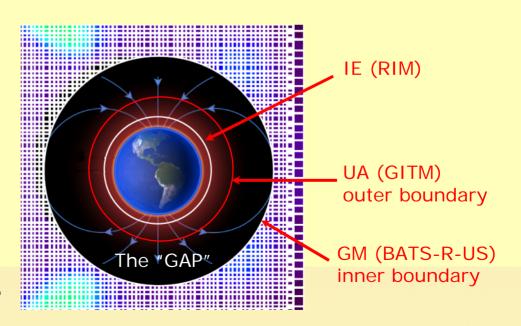

GITM solves for:

- 6 Neutral & 5 Ion Species
- Neutral winds
- Ion and Electron Velocities
- **Neutral, Ion and Electron** M **Temperatures**

GITM Features:

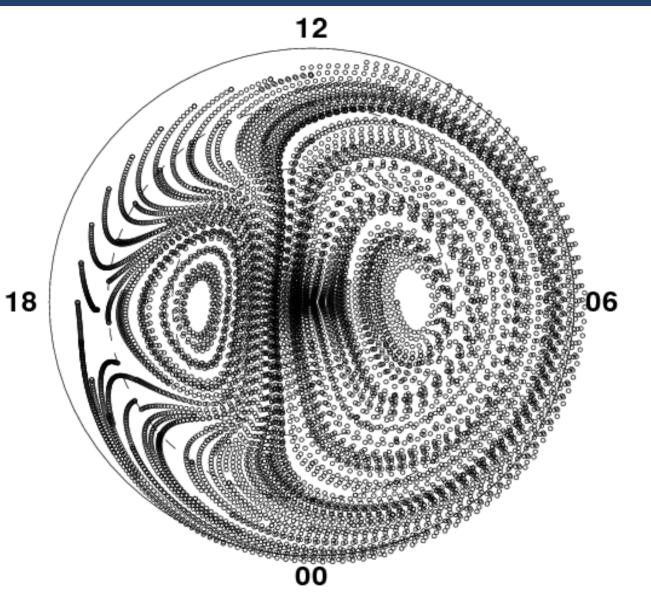
- Solves in Altitude coordinates
- Can have non-hydrostatic solution
 - Coriolis force
 - Vertical Ion Drag
 - Non-constant Gravity
 - Massive heating in auroral zone -
- Runs in 1D and 3D
- Vertical winds for each major species with M friction coefficients
- Non-steady state explicit chemistry 140
- **Flexible grid resolution fully parallel**
- Variety of high-latitude and Solar EUV drivers
- Fly satellites through model

Toth: SWMF at CCMC



Polar Wind Outflow Model (PWOM) (Alex Glocer)

- PWOM solves the time-dependent gyrotropic field-aligned transport equations for H⁺, O⁺, He⁺ and e⁻ along multiple magnetic field lines.
- Ion-neutral friction, charge exchange drag, field-aligned currents, topside heating, ion and electron heat conduction, solar zenith angle effects, centrifugal force, chemical sources and losses are all included.
- M PWOM is fully parallel
- Fully implicit time integration
- First order Godunov and second order Rusanov schemes
- PWOM provides outflow fluxes (density and velocity) for H⁺ and O⁺ to GM.
- PWOM obtains electric potential and field-aligned currents from IE.


QuickTime™ and a BMP decompressor are needed to see this picture.

Toth: SWMF at CCMC

http://csem.engin.umich.edu

7

Overlaid Points Show Convection Pattern

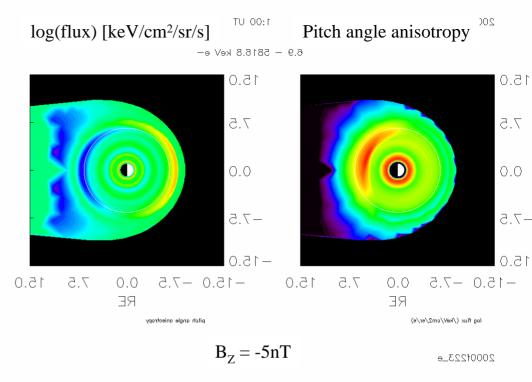
Dynamic Global Core Plasma Model (Mike Liemohn)

M DGCPM:

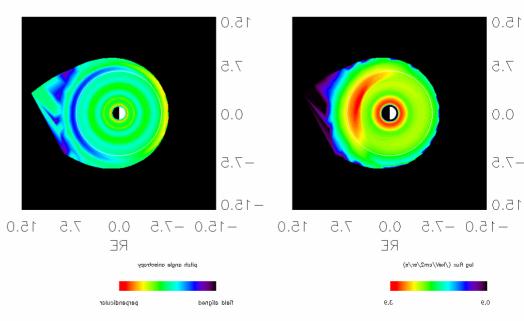
- Ober et al. [1997] dynamic plasmasphere model
- Solves the continuity equation for total flux tube content
 - Ionospheric sources and sinks, dayside magnetopause loss
 - Or Carpenter and Anderson [1992] saturation levels
 - Fixed or variable ionospheric source
- M Already very fast (much faster than real time)
- Main Already capable of handling arbitrary B and E
- M Already modular and can run as part of the SWMF
- M To do: coupling
 - It will affect density, but not pressure, in the MHD model
 - Distributing n_e along B-field lines is an open issue

M RBE:

- Solves the 2D drift equations for radiation belt e⁻ or H⁺
- Includes multiple energies (0.2 4 MeV) and pitch angles
- M Already very fast (faster than real time)
- Main Already capable of handling arbitrary B
- **Runs stand-alone as well as part of the SWMF**
- M Coupling
 - RBE obtains magnetic field strength and radial distance along closed field lines, and solar wind conditions from GM
 - To do: coupling with IE (currently uses Weimer's model)



Standalone RBE (with Tsyganenko 2004)


VS.

Coupled Model in SWMF

Toth: SWMF at CCMC

6.9 - 5816.8 keV e-

000	SWMF GUI: Configure Code	2		
4 A A	C + Shttp://localhost:8080/code_config/configure.php?codename=GM-IE-IM O C Google			
	SPACE WEATHER MODELING FRAMEWORK		GUI:	
SWMF GUI Home SWMF Manual REFERENCE Manual	SWMF GUI: Configure Code "GM-IE-IM" Configuration Summary		Code Control	
Create Code Directory Configure Code GM-IE-IM Complie Code Manage Codes Create Run Directory Setup & Execute Run Monitor & Process Run Manage Runs	The selected component versions and settings are: CM/AATSRUS grid: 8,8,8,400,100 IE/Ridley_serial grid: 91,181 IH/Empty IM/RCM2 FW/Empty SC/Empty SC/Empty UA/Empty View issued command log			
	Configuration Options			
Create Plots Manage Plots	Uninstall to throw out configuration changes and start from scratch. (Uninstall)			
	GM: BATSRUS Empty IE: Ridley_serial Empty BATSRUS BATSRUS_share IM: RCM2 WW: Empty PWOM RB: Empty RBE Rice Rice RiceVS SC: Empty BATSRUS SP: Empty GITM GITM2 Extra configure options: View Config.pl help for options Configure			
UNIVERSITY OF MICHIGAN	Set Component Grid (Set grid for GM) 8 8 400 100 (Set grid for IE) 91 181	framev selecte M Some multip	ponents of the ework can be easily sted for use. e components have ple versions or even native models.	

~~	~	-		
	r 10	e - 10		
		_	_	

SWMF GUI: Visualize Run Output

🔺 🕨 🖉 🗛 🗛 🖒 🕂 😪 http://localhost:8080/plot_results/plot.php?runname=2003-Oct-29&cmp=GM&plottyp 😋 - Q- Google

SPACE WEATHER MODELING FRAMEWORK

SWMF GUI: Create Plots for "2003-Oct-29"

Range: Min/Max Custom

SWMF GUI Home SWMF Manual REFERENCE Manual

Create Code Directory Configure Code Compile Code COMPONENT

Contour

Slice:

Isosurface:

View:

GM

T=0004:00:00 N=0018764 \$

Plot grid on slices?
No
Yes

○ No ⊙ Yes Variable= p [nPa]

Variable: V5: U_x [km/s]

Plotfile: T=Hour:Min:Sec N=Iterations (6 files found)

 Slice 1:
 No Slice
 X=
 Y=
 Z=
 0.

 Slice 2:
 No Slice
 X=
 Y=
 Y=
 0.

Select desired plot options and 'Update Plot'

Manage Codes

Create Run Directory Setup & Execute Run Monitor & Process Run Manage Runs

Create Plots

1998-05-04_SWMF 2000-07-15_SWMF 2001-03-31_SWMF 2001-08-04_SWMF 2002-04-17_SWMF 2003-11-20_SWMF 2003-0ct-29 debug1 debug2 Manage Plots

LINKS

Center at: X= 0. Y= 0. Z= 0. with view width 30.	013
Perspective angles: Phi= 80. Theta= 160. (Help me with view angles,)	
Vector Traces:	
Plot last closed fieldlines? ONo OYes (5-10 minutes render time)	
Body:	
Plot sphere at origin? O No O Yes with radius 2.7	
Text Label:	
Label:	
Update Plot) (wait ~1 minute unless fieldlines plotted)	
Copyright (D 2006. All rights reserved.	

Value= 50.

UNIVERSITY OF MICHICAN

- Visualize run output using quality templates with many customizable options.
- M Outputs postscript, png, animated gif, ...

GUI: Visualization

Part Results: 34_sec.3.4000+0000_x0018764.a4

A A G + Bittp://tocahest.8581/plot.results:researchit.pop * Gr Com File=34_vec.3_00040000_s0018764.plt, T=0004400.00 N=0018764, Style=013

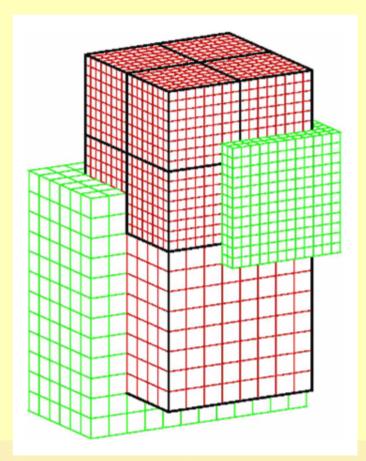
Plottype: 3Dplt

GM Plot Styles

008 movie delete

010 movie delete

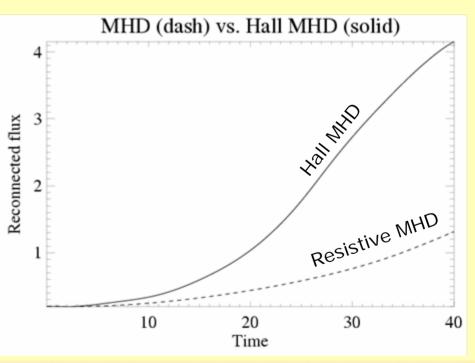
movie



MHD Code: BATS-R-US

Block Adaptive Tree Solar-wind Roe Upwind Scheme

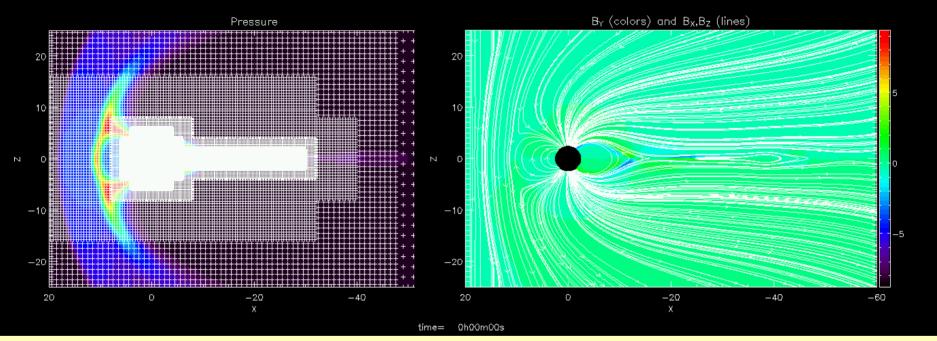
M Conservative finite-volume discretization M Shock-capturing TVD schemes Rusanov, HLL/AW, Roe, HLLD Parallel block-adaptive grid M Cartesian and generalized coordinates Explicit and implicit time stepping M Classical, semi-relativistic and Hall MHD Multi-species and multi-fluid MHD **M** Splitting the magnetic field into $B_0 + B_1$ M Various methods to control divergence B



Hall MHD (Gabor Toth & Yingjuan Ma)

- Hall physics can play a critical role in collisionless magnetic reconnection.
- M The GEM challenge on reconnection physics concluded that Hall physics is the minimum physics needed to achieve fast reconnection (Birn et al., JGR, 106, 3715, 2001).
- M Physically, the Hall term decouples the ion and electron motion on length scales comparable to the ion inertial length ($\delta = c/\omega_{pi} = V_A/\Omega_{ci}$). In essence, the electrons remain magnetized while the ions become unmagnetized.
- M Consequences:
 - Whistler wave (very fast)
 - Introduces asymmetry
 - Ion kinetics can lead to fast reconnection

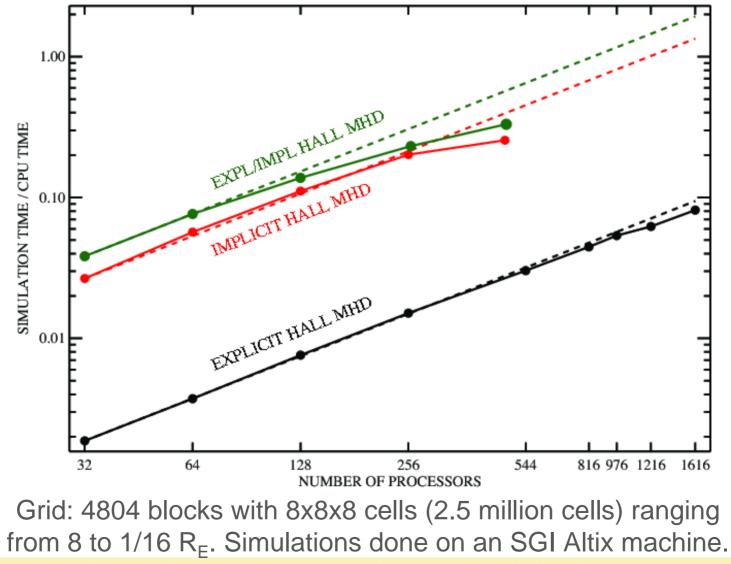
$$\mathbf{E} = -(\mathbf{u}+\mathbf{u}_n) \times \mathbf{B} + \eta \mathbf{j}$$
 $\mathbf{u}_n = -\frac{\mathbf{j}}{en_n}$



GEM Challenge simulation with BATS-R-US

Hall MHD Magnetosphere Simulation

48,04 blocks with 8x8x8 cells (total 2.5 million cells) ranging from 8 to 1/16 R_F.


Solution shows blobs of plasma detaching in the tailward direction. Time scale is a few minutes.

Toth: SWMF at CCMC

Parallel Scaling for Hall MHD

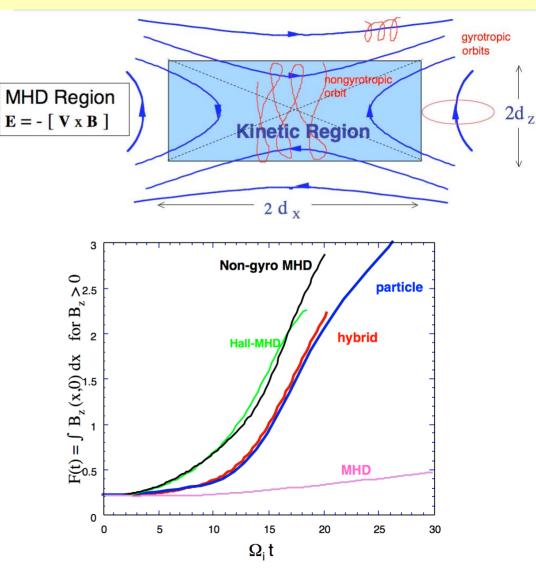
Toth: SWMF at CCMC

Non-Gyrotropic Reconnection Model (Masha Kuznetsova)

M Idea:

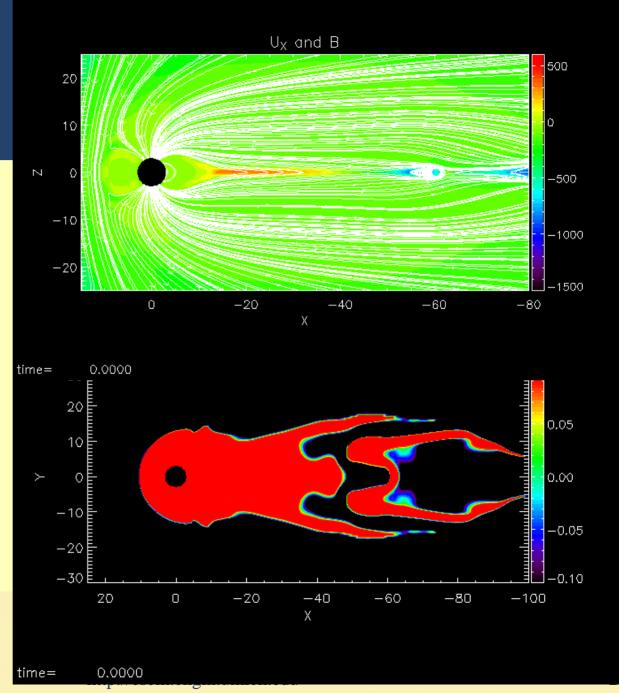
 Use full particle and hybrid simulations to construct a phenomenological but quantitatively accurate reconnection model

Algorithm:


- Find reconnection sites
- Fit an appropriately sized 'box' around it
- Modify the electric field (and thus the induction equation) based on the model.

M Advantage:

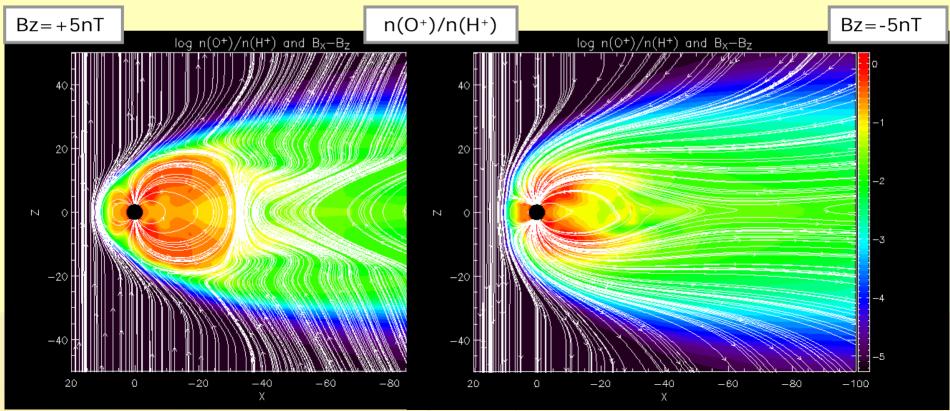
- Allows fast reconnection
- Efficient and simple


M Disadvantage:

- Finding reconnection site is not easy
- Ad-hoc parameters need tuning
- M To do:
 - Find reconnection site and its orientation in general configurations
 - Validate/tune model against/for events

Non-Gyrotropic Reconnection Model simulation with the latest version of BATS-R-US

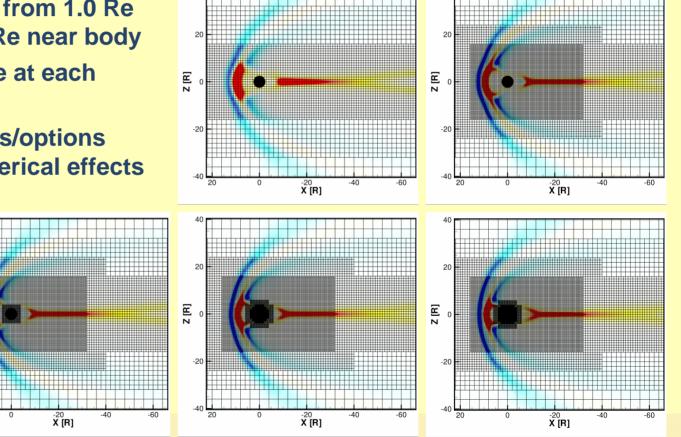
- Solution shows large blobs of plasma detaching in the tailward direction (similar to Masha's earlier results).
- Time scale is more than an hour.
- Reconnection line is strongly curved in the Y=0 plane.


Toth: SWMF at CCMC

Multi-Fluid MHD (Gabor Toth & Yingjuan Ma)

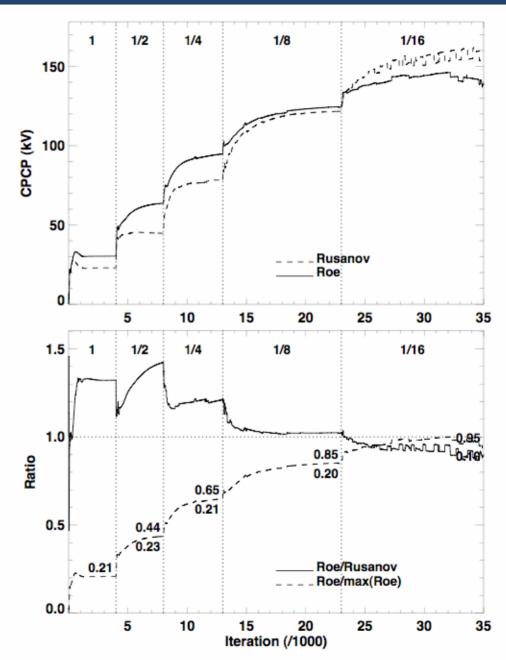
- Multi-Fluid MHD has many potential applications
 - ionospheric outflow, outer heliosphere interaction with inter stellar medium, etc.
- We have implemented a general multi-fluid solver with arbitrary number of ion and neutral fluids.
- Each fluid has a separate density, velocity and temperature.
- M The fluids are coupled by collisional friction/charge exchange and/or by the magnetic field.
- **W** We are still working on improving the stability/efficiency of the scheme.

Verification Study: Effect of Numerics on CPCP



- Change resolution from 1.0 Re near body to 1/16 Re near body
- Run to steady state at each resolution
- Use various solvers/options to investigate numerical effects

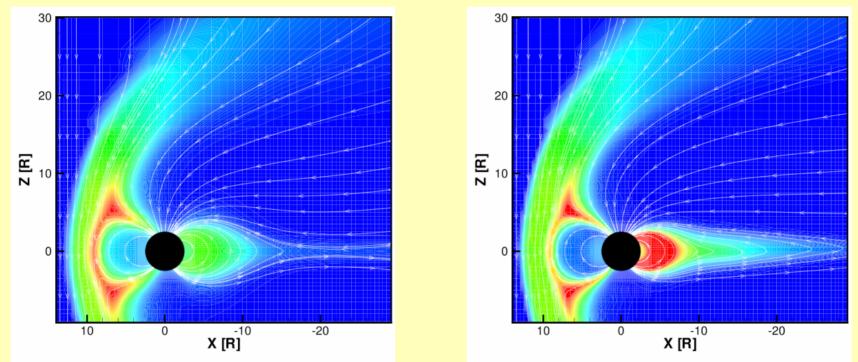
20


-20

z [R]

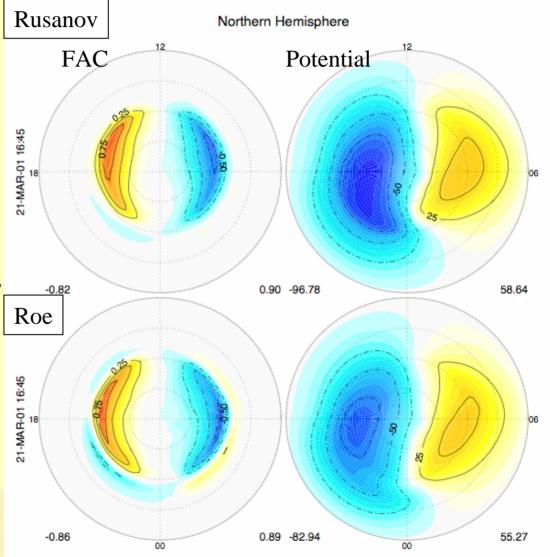
Grid Convergence and Rusanov vs Roe Scheme

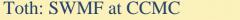
- The CPCP starts to converge at the highest resolutions only
- Rusanov scheme is a very robust algorithm
- Roe solver has much less numerical diffusion
- Roe has larger CPCP than Rusanov on coarse grids (as expected), but smaller CPCP at high resolution. Why???

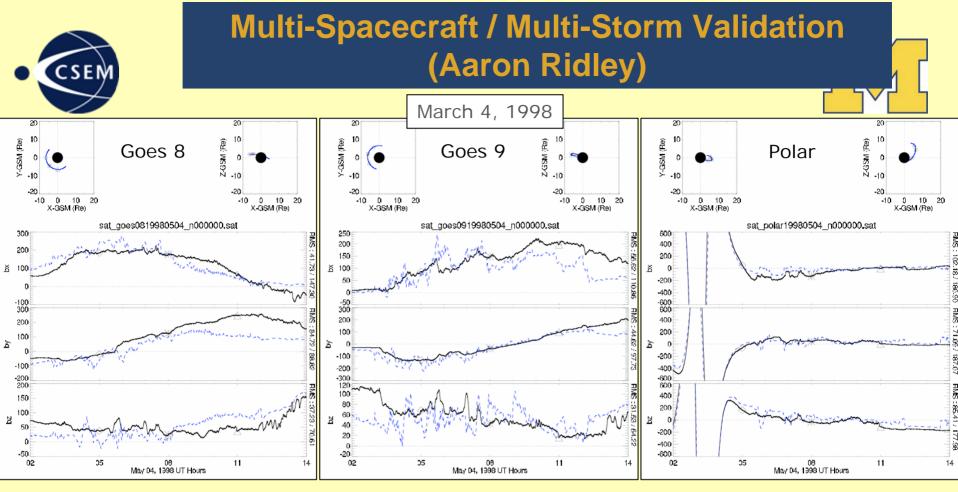


Toth: SWMF at CCMC

Pressure in the Y=0 Plane Rusanov vs Roe




Pressure in the tail is MUCH larger for the Roe solver


- **Field-lines are greatly stretched in tail**
- M Solution looks much better!

Ionosphere solution for Rusanov (top) vs Roe (bottom)

- Notice Region-2 currents on night-side in Roe simulation (bottom).
- Stronger region-2 currents allow Pedersen currents to close towards lower latitudes, thereby reducing the potential.
- This is why the Roe solver produces a lower potential.

- M Started to systematically and quantitatively validate the SWMF
- M Track improvements in the code in a quantitative manner
- Run 10 time-periods ranging from quiet to superstorm
- Automatically downloads code and runs each event
- We validate against 150+ magnetometers, DMSP, CHAMP, GOES, Polar...

Future Deliveries to CCMC

- **M** CCMC already has a recent version of the SWMF.
- **GITM** could be added to the magnetosphere simulations.
- M Improved Roe solver could be a new option in BATS-R-US.
- M Hall and Multi-Fluid MHD could also be used after some validation and improvements.
- PWOM, RBE, SALAMMBO and DGCPM will be delivered once they are fully coupled and tested.
- **SWMF GUI and Parameter Editor may be useful for CCMC.**