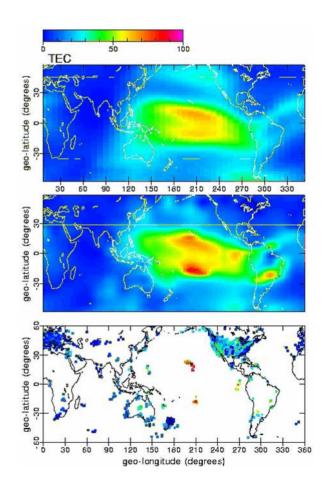
Air Force Weather

Integrity - Service - Excellence

Air Force Weather View of CCMC

Lt Col Trey Cade
Applied Technology Division
HQ Air Force Weather Agency
Trey.Cade@afwa.af.mil

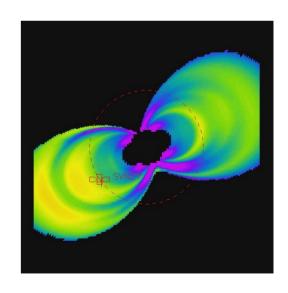
Space Weather Modeling Needs


U.S. AIR FORCE

- Forecast Models are required for the following:
 - Solar Surface/Solar Atmosphere
 - Forecasting effects on communications, radars, and space systems; input to forecasting solar wind
 - Solar Wind
 - Input to forecasting of the magnetosphere and ionosphere
 - Magnetosphere
 - Forecasting storm effects and magnetospheric effects on space systems
 - lonosphere (lonospheric Parameters & Scintillation)
 - **Forecasting effects on electromagnetic propagation**
 - Thermosphere/Stratosphere/Mesosphere
 - Orbital prediction, forecasting high-altitude winds, input to forecasting ionosphere
- Forecast requirement is 0-120 hours!

AFW/Community Modeling Challenges

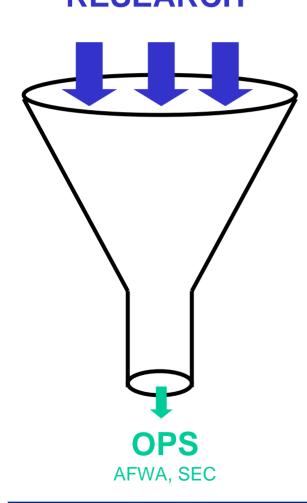
- Model portability, optimization, and robustness
- Model output formats
- Model visualization and effects modeling
- Model validation
- Data quality/error estimates required by advanced data assimilation systems
- Technology Transition Process



Importance of CCMC as a Technology Transition Partner

Brig Gen Thomas E. Stickford, USAF Director of Weather: "CCMC is fertile ground for technology exploitation—a distinct advantage for the Air Force and our Nation!"

- Model validation
- Making models more easily transitionable
- **■** Testing model robustness
- **■** Testing in real-time mode
- Model visualizations / applications



Back-up Slides

Technology Transition Process

RESEARCH

Technology Transition is more than handing-off a model

- Integrated into infrastructure
- Documented
- Maintainable
- Automated database interaction, model execution, post-processing, product generation

- Solar Surface/Atmosphere Forecasting (0-120 hours)
 - Flare time, location, and intensity
 - Particle and electromagnetic emissions
 - Solar atmosphere parameters
 - Backside activity

- Necessary for:
 - Forecasting interference on communications and radar systems
 - Forecasting radiation effects on satellite systems, astronauts, and aircrews
 - Providing input drivers for solar wind forecasts

- Solar Wind Forecasting (0-120 hours)
 - Plasma and magnetic field parameters
 - Integrate ambient and transient characteristics

- Necessary for:
 - Input drivers for magnetosphere & ionosphere
 - Forecasting magnetic storm onset

- Magnetospheric Forecasting (0-72 hours)
 - Stand-off distance of magnetopause / bow-shock
 - Particle and magnetic field characteristics
 - South Atlantic Anomaly characteristics
 - Geomagnetic storm currents

- Necessary for:
 - Forecasting geomagnetic storm effects
 - Satellite drag / orbit changes
 - Power outages
 - Forecasting satellite damage
 - Input driver for ionosphere

- Ionospheric Forecasting (0-120 hours)
 - Great-circle route vertical cross sections
 - Auroral strength & boundary location
 - Electron Density Profiles
 - Total Electron Content

- Necessary for:
 - Forecasting effects on communications, radars, and navigation systems

- Ionospheric Scintillation Forecasting (0-120 hours)
 - Equatorial scintillation
 - Auroral scintillation

- Necessary for forecasting:
 - Communication outages
 - GPS errors & outages
 - Missile defense & satellite tracking radar errors

- Upper Atmosphere Forecasting (0-120 hours)
 (Stratosphere / Mesosphere / Thermosphere)
 - Densities
 - Temperatures
 - Winds

- Necessary for:
 - Forecasting orbital changes / space object re-entry
 - Input driver for ionosphere
 - Stratospheric turbulence
 - High-altitude dispersion