Metrics for Addressing Space Weather Prediction Center User Needs

Howard J. Singer NOAA Space Weather Prediction Center

Outline:

- SWPC Customers and SWPC Mission
- Intro to Metrics & Previous Metrics Work
- Example: Geospace Model Selection
- Using Metrics for Model Performance Verification
- SWPC Metrics and Validation Activities
- Conclusions and Lessons Learned

International CCMC-LWS Working Meeting: Assessing Space Weather Understanding and Applications April 3-7, 2017 Cape Canaveral, Florida

NOAA National Weather Service Space Weather Prediction Center

THE NATION'S OFFICIAL SOURCE OF SPACE WEATHER ALERTS AND WARNINGS

Acknowledgments: Balch, Cash, Murtagh, Onsager, Rutledge, Steenburgh, Viereck

Customer Subscriptions Skyrocket... (through February 2017)

Small solar cycle, but the largest geomagnetic storms on record occurred during smaller than average cycles (e.g. 1859, 1921)

Space Weather Prediction Center

Established 1946 as part of Central Radio Propagation Laboratory

Operations – Space Weather Forecast Office

Daily forecast since 1965.

Specifications; Current conditions Forecast; Conditions tomorrow Watches; Conditions are favorable for storm Warnings; Storm is imminent with high probability Alerts; observed conditions meeting or exceeding storm thresholds

R & D –

R20

Space Weather Prediction Testbed Transitioning models into operations

Research-to-Operations

Applied Research

Model Development

- Model Test/Evaluation
- Model Transition
- Operations Support

02R

Operations-to-Research

- Customer Requirements
- Observation Requirements
- Research Requirements

A Metrics Definition

" A METRIC IS A MEASUREMENT, TAKEN OVER TIME, THAT COMMUNICATES VITAL INFORMATION ABOUT A PROCESS OR ACTIVITY, DRIVES APPROPRIATE LEADERSHIP OR MANAGEMENT ACTION, AND IS LINKED TO THE STRATEGIC PLANNING PROCESS."

From: Performance Measurement And Management - Modern Techniques by Capt Harry Krukenberg - Air Force Institute of Technology

Metrics Definition (with Possible Example)

"A METRIC (Geopace model skill predicting dB/dt) IS A MEASUREMENT, TAKEN OVER TIME, THAT **COMMUNICATES VITAL INFORMATION (poor** comparison of model dB/dt thresholds with nightside observations) ABOUT A PROCESS OR **ACTIVITY (substorm activity), DRIVES APPROPRIATE LEADERSHIP OR MANAGEMENT ACTION** (support model development that includes ionospheric outflow), AND IS LINKED TO THE STRATEGIC PLANNING PROCESS (e.g. National Space Weather Strategy; Ops Center investment)."

Prior Community Work on Metrics

ESTABLISHING METRICS FOR THE NATIONAL SPACE WEATHER PROGRAM: A Strategy, Implementation Plan, and Metrics Guidelines (1998)

Identifies both scientific and operational metrics

Steering Committee E. Szuszczewicz* (Chair): Ionospheric-Thermospheric E. Hildner*: Solar-Interplanetary (Solar Wind) R. Wolf*: Magnetospheric-Ionospheric							
	Subpanels						
Solar-Interplanetary	Magnetospheric- Ionospheric	Ionospheric-Thermospheric					
T. Bastien	J. Albert	D. Anderson					
J. Davils	D.N. Baker	S. Basu					
S. Habbal	W. Burke*	W. Denig					
J. Harvey	J. L. Horwitz	D. Farley					
T. Hocksema	J. Lyon*	B. Fejer*					
S. Kahler	T. Onsager	T. Fuller-Rowell*					
J. Klimchuk*	J. Raeder	R. Heelis*					
J. Lean	J. Rochier	T. Killeen*					
J. Linker*	H. Singer*	F. Marcos					
D. Neidig*	T. Tascione*	R. Meier					
V. Pizzo*	D. Vassiliadis	P. Richards					
		R. Schunk					

*Initial panel membership responsible for generating strawman specifications for NSWP metrics.

Prior Community Work on Metrics

Center for Integrated Space Weather Modeling Metrics Plan and Initial Model Validation Results

H. Spence et al. / Journal of Atmospheric and Solar-Terrestrial Physics 66 (2004) 1499–1507

C	Opera 1	ational SW Community Shocks and CMEs at L1	Baseline Models	Data Sets	Models
C	Dpera 1	ational SW Community Shocks and CMEs at L1			
	1	Shocks and CMEs at L1			
		a Speed	Augmented Vrsnack- Gopalswamy ^a	ACE "	MAS+ENLIL
		b Arrival time c Bz			
letrics	2	a Event/No Event b Rise Time	PROTONS [®]	GOES "	UCB
ational N	3	c Peak Flux d Duration e Cutoff	" " Shea-Smart°	" " POES	
Opera	5	a Dst b Ap/K	Temerin-Li ^d ARX-McPherron	NGDC "	LFM+RCM
	4	Regional Ground dB/dt	Weigel-Baker*	IMAGE (mag)	LFM+TING
	5	Radiation Belt EP fluxes a GEO b MEO and LEO	Li ^f Vassiliadis ^e	LANL	RBM
	6	Ionosphere/Neutral Atmosphere a "State" of ionosphere	IRI ^h	Digisondes	TING
S	Scier	ntific SW Community			
	1	Solar/Coronal			
	2	a Coronal Hole Index b White-light Streamer Belt Index Solar Wind/IME at L1	PFSS/Wang-Sheeley ⁱ PFSS/Yi-Ming Wang ^j	SOHO UV maps SOHO LASCO	MAS+ENLIL "
	-	a Density b Velocity c IMF - vector	WSA ^k + nv = constant WSA WSA + IBI	ACE "	MAS+ENLIL "
e Metrico	3	GEO/MEO Environment a Magnetic field b Particle fluxes (ring current/rad belt)	Tsyganenko ¹	GOES	LFM+RCM
Science	4	c M'pause crossing MI Coupling	Shue °	GUES/LANL "	LFM+RCM
		 a Polar Cap Potential b Polar Cap Boundary c Field Aligned Currents (2D) 	Weimer Weimer Weimer	UMSP "	LFM+1ING " LFM+TING+MIC
	_	d Particle precipitation	AURORA 9	ee	MIC
	5	a E-, F-region Heights	IRI	Digisondes +	TING

Geospace Models: Transition to Operations

- **Goal:** Evaluate Geospace models (MHD and empirical) to determine which model(s) are ready for transition to operations
- Focus: Regional K and dB/dt (important to electric utilities)
- Partnership: Evaluation at NASA/Goddard CCMC working with SWPC, modelers and science community

SWPC Selection FY 14: U. Of Michigan (MHD), VT (Weimer Empirical)

based on CCMC reports, internal and external advice, and following considerations:

Solar Influences on Geospace Predicted with Geospace Models using Solar Wind Input

- Strategic Importance
- Operational Significance
- Implementation Readiness
- Cost to Operate, Maintain, and Improve

U. Of Michigan Geospace Model Operational Oct 16

Geospace Model Selection Threshold Metric dB/dt Model Data Comparisons at High Latitudes

Contingency tables can be created from model/ observation values crossing thresholds at different dB/dt levels.

Pulkkinen et al.: Geospace Model Validation/Transition, Space Weather Journal, 2013.

Dec 14, 2006 12 UT Dec 16, 2006 00 UT Black – Model Blue - Observation

Geospace Model Selection Model Data Comparisons POD and POFD for different dB/dt Thresholds integrated over high and mid-latitude stations

Pulkkinen et al.: Geospace Model Validation/Transition, Space Weather Journal, 2013.

> Blue – POD Black – POFD

Geospace Model Selection Distribution Metric Distribution of model K for Observed K=4, 5, and 6 at mid-latitude stations

- Illustrates biases
- Insight into skill scores in contingency tables
- Identifies
 systematic
 and random
 errors

Glocer et al.: Geospace Model Validation/Transition, SWJ, 2016.

Validation and Metrics Applied to Operational Michigan Geospace Model

Kp Distribution of Predicted Kp Values for Observed Kp Values (1-6)

Enhances understanding of model performance

Enables establishment of confidence levels and error bars

SWPC Metrics and Validation

- www.swpc.gov (under Products and Data, Reports, Forecast Verification)
- Topics include:
 - Geomagnetic Activity
 Forecasts
 - Solar Activity Forecasts
 - Flare Receiver Operating Characteristics (ROC) Curves
 - Bibliography, Tutorials, Verification Glossary

Receiver Operation Characteristic Curves Applied to Flares and SPE

		Observed			
Forecast		Yes	No	Total	
	Yes	а	b	a+b	
	No	С	d	c+d	
	Total	a+c	b+d	n	

See SWPC http://www.swpc.noaa.gov/content/ roc-receiver-operating-characteristic-curves

Metrics: Selected Lessons Learned and Conclusions

- Metrics for model performance are different from metrics for operational forecasts (forecasters provide forecasts; models provide guidance)
- The same product (model prediction) may need different metrics applied for different users
 - E.g. power grid (Kp 5) vs pigeon racer (Kp 4)
- Operational metrics can be different than scientific metrics
 - dB/dt on ground vs cross-polar cap potential
- Sometimes operations can benefit by using scientific rather than operational metrics
 - Bz accuracy is a scientific metric, but clear that many operational products can benefit from Bz accuracy

Metrics: Selected Lessons Learned and Conclusions

- Operational metrics can be established by customers and forecasters, but iteration between customers and model developers leads to appropriate choices
- One model may not always be "best" at all metrics
- Metrics are important for understanding model limitations and credibility
- Evaluations for operations (rather than science) provides valuable feedback to science (O2R)
- Models depend on data for input, assimilation, and validation