Radiation and Plasma Effects Working Group

- Surface Charging few eV keV electrons, plasma density (Leads: J. Minow, D. Pitchford, N. Ganushkina) SSA-6 TEAM AGENDA
- Internal Charging keV—MeV electrons (Leads: P. O'Brien, Y. Shprits) SSA-6
 TEAM AGENDA
- Single Event Effects MeV–GeV protons, ions
 (Leads: M. Xapsos, J. Mazur, P. Jiggens) SSA-3,SSA-6 TEAM AGENDA
- Total Dose keV–MeV electrons, keV–GeV protons, GCR ions (Leads: I. Jun, T. Guild, M. Xapsos)

SSA-6 TEAM AGENDA

 Radiation effects for aviation (Leads: K. Tobiska, M. Meier) SSA-6
 TEAM AGENDA Plasma/neutrals across a broad energy range and with different origins

Ring current, aurora, plasma sheet, Radiation belt electrons, trapped proton belt, SEPs, GCRs, terrestrial gamma ray flash

What we have done so far

- Identified different users
- Identified focus (mostly on space environment)
- Identified energy spectra is needed for all impact quantification
- Identified key physical parameters/quantities for the effects
- Metrics (nontrivial)
 - Headline type/signature type (easily understood by satellite/aviation users)
 - Comprehensive science type

Metrics

- Statistical evaluation using O'Brien "green anomalies" technique (instantaneous value over statistical average)
- Event/interval type of validation
- Sensitivity study (vary space weather environment to see changes in impacts)

Interaction with Other Teams

- Katherine Winters launch commit considerations
- Key team members participated in Tuesday's SEP session
- Get ideas from other focus teams
- Surface charging ←-→ auroral dynamics
- Will do more during the remainder of the workshop and onward

Issues or Problems Impeding Progress

- Need spectra/dose measurements
- Standardized dosimeter, cross-calibration, interpretation of dose measurements inside shielding such as aircraft, ISS
- Recommend NASA missions have environment/effects sensors (dosimeters)

Team plans for the rest of the week Further refine metrics/identify tasks

Surface Charging Status

- Initial effort will focus on high priority GEO, MEO, GTO, and LEO polar environments where surface charging can exceed hundreds of volts
- User groups include spacecraft designers, operational situational awareness, anomaly investigations, and impact on science measurements
- Metrics (team is evaluating options):
 - Statistical evaluation using O'Brien "green anomalies" technique (instantaneous value over statistical average)
 - Parameters used for inputs to charging models
 - GEO, MEO, GTO: Ne, Te, Ni, Ti or other
 - LEO polar (auroral): Ne, E_{beam} , ΔE_{beam} , and other Fontheim parameters
 - Flux spectra at different locations
- Environment models (initial focus):
 - Ovation CCMC implementation
 - LANL model (Vania Jordanova)
 - IMPTAM (Natalia Ganjushkina)), run online in near-real time since 2013
- Spacecraft charging models (secondary effort)
 - NASCAP
 - SPIS
 - SPENVIS, MUSCAT, and other small group charging codes

Internal Charging Metrics

• We designate a small number of headline metrics, plus an expanded set of comprehensive metrics. The program should mark progress via the headline metrics, while individual projects mark progress with the comprehensive metrics.

Internal charging headline metrics:

- User Metrics: % Green anomalies for 24-hour average current beneath 100 mils Al spherical, gamma=1
 - GEO (GOES)
 - GTO (RBSP)
- Science Metrics: Omnidirectional differential or integral flux
 - >2 MeV @ GOES, 5 minute averages
 - 1 MeV @ RBSP, 1 minute averages (includes inner zone)

Internal charging events/intervals

- 2015 has some nice big storms, RBSP data to validate
- The March, April, June, and July 2015 storms

Internal charging "comprehensive" metrics:

- User Metrics: % Green anomalies for 6, 24, 72-hour average current beneath 40, 100, 350 mils Al spherical, gamma=1
 - GEO (GOES)
 - GTO (RBSP)
 - LEO (POES)
 - HEO (TWINS-2)
 - GPS
- Science Metrics: Omnidirectional and locally mirroring differential or integral flux
 - 0.1, 0.3, 1 MeV, >2 MeV @ GOES, (or LANL) 5 minute averages
 - 0.1, 0.3, 1 MeV, 2 MeV @ RBSP, 1 minute averages (includes inner zone)

Internal Charging Metrics (continued)

- We are not currently addressing how the metrics account for model error: is it really a "Green" anomaly if the model error bar included some yellow?
- We are not addressing mission design specs (Satellite design users, govt agency, insurers): out of scope, and hard to validate a 95% confidence value for 10-year worst case without 200 years of data.
 Best we could do is attempt to specify 3 largest events in GOES >2 MeV since 1986 as 1 in 10 year worst case.
- How do we address designer, insurer, govt agency needs? By including most severe, well-observed events in our validation set.

- Models:
- VERB, Salammbo, RBE/CRCM, DREAM, BAS, Rice REM
- CRRESELE in Ap mode
- GREEP, Ukhorskiy nearest neighbors, SWPC REFM, NARMAX

Total Ionizing Dose (and Displacement Damage Dose)

- Identify user groups
 - Satellite designer (SD) for both commercial and government
 - Satellite operators and anomaly analysts (SOAA) for both commercial and government
 - Scientists (SCI) for both academia and government
- Identify physical parameters/metrics for each user group
 - · SD: Dose-depth for the mission
 - SOAA: Dose-depth from launch to given time
 - SCI: proton and electron energy spectra
 - Electrons for > 100 keV
 - Protons for > 1 MeV
- Identify empirical models for each metric
 - Trapped: AE8/AP8; AE9/AP9/SPM; IGE2006/POLE (other older models are also available (e.g., CRESSELE, CRESSPRO, etc.))
 - Solar: King; JPL; ESP/PSYCHIC; SAPPHIRE
- Identify physical model for each metric
 - Trapped: SALAMMBO; DREAM
 - Solar: SOLPENCO
- · Error metrics to consider:
- Long-term variability of trapped particles (data-based statistical analysis?) at different locations within planetary magnetosphere(s)
- Most of the error metrics used for Internal Charging Working Group seem to apply here, too.
- Statistics of solar proton environment: fluence spectra
- Model predicted dose vs. measured dose (e.g., CRaTER instrument)
- Measured solar proton event spectra for individual events vs. physical model prediction

SEEs: Identified empirical/statistical models

- Trapped protons
 - AP9 (also AP8 still used in some standards);
 - PSB97 + update (local model based on SAMPEX/PET)
- SEPs
 - ESP-PSYCHIC
 - JPL
 - MSU
 - SAPPHIRE
- GCRs
 - ISO-15390 GCR model
 - Badhwar-O'Neill (BON)
 - DLR GCR model
- Magnetospheric Modelling codes:
 - ESHIEM-MSM (magnetospheric shielding code)
 - Shea and Smart model

Relevant parameters

- a) SD+SLAO (SEU rate): proton fluxes (>30 MeV & > 50 MeV) [radiation belt peak vales (5-minute); worst-case SEP values; worst-case solar particle event (SPE) fluence]
- b) SD (SEL/SEB probability): proton fluences (>30 MeV & > 50 MeV) [Orbit-averaged radiation belt flux (fluence); cumulative SEP fluence]
- c) SD+SLAO+SO: Abundance ratios and charge states of SEP heavy ions (Z>2) [extension to event-to-event variability/distributions if possible]
- d) SD+SLAO: LET behind nominal shielding** (1 g.cm⁻²)

Validation methods

- a). Statistical evaluation using O'Brien "green anomalies" technique
- b. Event /interval based

^{**}application of particle transport codes as black box only to derive useful quantities

Radiation Effects for

- Aviation models (Danie Antia) ton
 - More than dozens of models are available worldwide
 - Monte Carlo transport
 - Deterministic transport
 - Data-driven models
- Aviation radiation data for scientific modeling and operations (Kent Tobiska)
 - ARMAS project (which incorporate USAF's REACH effort)
 - Measurements in Europe/elsewhere in the world
- D-index for communicating with users/public (Matthias Meier)-- A new Space Weather Index for Aviation based on dose rate, not on >10 MeV proton flux outside the magnetic/atmospheric shielding
 - Due to magnetic and atmospheric shielding, only particles > 500 MeV matters to aviation

Leverage the LWS institute SAFESKY effort: PI Kent Tobiska