Physical Variables written by CTIPe simulations

The coordinate system (geographic) consists of:
- Geographic longitude \(\text{Lon} \) with positive vector components meaning eastward,
- Geographic latitude \(\text{Lat} \) from -90 at the south pole to 90 at the north pole with positive being northward,
- pressure level \(\text{IP} \) or height \(H \) in km.

Vector (arrow) plots of the velocities only make sense as:
- vertical cuts (meridional or at constant-latitude) if \(\text{UseHeight} \) is selected,
- synoptic maps of velocity vectors (over local time and latitude) if plotted at constant height (not constant pressure level \(\text{IP} \)).

The basic plasma and electrodynamic field variables in 3D are:
- Neutral mass density \(\rho \) in \([\text{kg/m}^3]\).
- \(H \) (height) in \([\text{km}]\) corresponding to pressure level number \(\text{IP} \)
The height of a pressure level varies spatially and with time. Heights covered start at about 80 km (\(\text{IP}=0 \)) and reach a few hundred km above ground (the maximum found for \(\text{IP}=14 \), the top layer, is typically between 450 km and 1000 km).
The height can be used as an alternative 3rd coordinate for plotting.
- Particle number density \(N \) in \([\text{m}^{-3}]\) with species identifier (after the "_"):
 - e: electrons,
 - O: atomic oxygen,
 - N2: nitrogen molecules,
 - O2: oxygen molecules,
 - NO: nitric oxide,
 - NO+: nitric oxide ion,
 - N2+: molecular nitrogen ion,
 - O2+: molecular oxygen ion,
 - N+: atomic nitrogen ion,
 - O+: atomic oxygen ion,
 - H+: atomic hydrogen ion.
- Neutral gas temperature \(T_n \) in \([\text{K}]\).
- Mean molecular mass \(\text{Rmt} \) in \([\text{amu}]\).
- Hall and Pedersen conductivities \(\text{sigma}_H, \text{sigma}_P \) in \([\text{mho/m}]\).
- Neutral gas velocity \(V_n \) in \([\text{m/s}]\) with its three components \(V_{n_Lat} \) (meridional; CTIP name "V_x"), \(V_{n_Lon} \) (zonal, longitudinal; CTIP name "V_y") and \(V_{n_IP} \) (vertical, radial; CTIP name "V_z").
- Plasma (ion) velocity \(V_i \) in \([\text{m/s}]\) with its components \(V_{i_Lat} \) ("Vi_x"), \(V_{i_Lon} \) ("Vi_y"). \(V_{i_IP} \) ("Vi_z") is missing in the model output and assumed to be zero for vector arrow plots.
- Heating energy \(\text{Psolar} \): solar heating in \([\text{J/(kg\cdotsec)}]\)
Pjoule: joule heating in [J/(kg·sec)]

Prad: radiation heating/cooling in [J/(kg·sec)]

- **Electric field**
 - E_140_theta: latitudinal component of electric field at 140 km in [V/m]
 - E_140_lambda: longitudinal component of electric field at 140 km in [V/m]
 - E_300_theta: latitudinal component of electric field at 300 km in [V/m]
 - E_300_lambda: longitudinal component of electric field at 300 km in [V/m]

Height-integrated quantities in 3D data

available at each position in local time and latitude (obtained from 3D CTIP variables above)

- **NmF2**: maximum electron density \(N_e \) in \([m^3]\) in the vertical profile,
- **HmF2**: height in \([km]\) of the maximum of \(N_e \) (see NmF2),
- **TEC**: integrated total electron content in \([TECU=10^{16} \text{ electrons/m}^2]\) in the altitude range of 80 km - 2000 km.

Height-integrated quantities

- **Wjoule**: Joule heating \([\text{mW/m}^2]\),
- **Win**: Energy flux \([\text{mW/m}^2]\),
- **En_avg**: Mean particle energy \([\text{keV}]\),

Energy deposition rates (in GW)

- **P_tot**: auroral energy input over both the northern and southern hemispheres
- **P_euv,N**: extreme ultraviolet solar radiation \((\lambda < 102.7 \text{ nm})\) integrated over northern hemisphere
- **P_euv,S**: extreme ultraviolet solar radiation \((\lambda < 102.7 \text{ nm})\) integrated over southern hemisphere
- **P_uv,N**: far ultraviolet solar radiation \((102.7 \text{ nm} < \lambda < 200 \text{ nm})\) integrated over northern hemisphere
- **P_uv,S**: far ultraviolet solar radiation \((102.7 \text{ nm} < \lambda < 200 \text{ nm})\) integrated over southern hemisphere
- **P_J.E,N**: sum of Joule heating and kinetic energy dissipation in northern hemisphere
- **P_J.E,S**: sum of Joule heating and kinetic energy dissipation in northern hemisphere
- **P_Joule,N**: joule heating integrated over the northern hemisphere
- **P_Joule,S**: joule heating integrated over the northern hemisphere
- **P_kin,N**: kinetic energy in the northern hemisphere
- **P_kin,S**: kinetic energy in the southern hemisphere
- **P_kin**: kinetic energy in both the southern and northern hemispheres

Changes in output parameters from geomagnetic quiet condition \((Kp \sim 3)\): \(rd(output \ parameter) \)

\[(e.g: \ rd(T_n) = T_n \ (current \ condition) - T_n \ (geomagnetic \ quiet \ condition))\]