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1 Estimating geomagnetically induced current

from the time derivative of the magnetic

field

In this section, a simple method that one can use to estimate geomagnetically
induced current (GIC) at individual high-voltage power transmission system
nodes is derived. First, basic mathematical relations associated with the
GIC phenomenon are reviewed and the expressions used in the method are
derived. Then, the method is “tailored” for application with an individual
node of the North American power transmission system.

1.1 Some basic mathematics

Although in detailed investigations more complex mathematical relations
may need to be utilized, GIC is to a good approximation linear function of
the local geoelectric field, i.e.

GIC(t) = aEx(t) + bEy(t) (1)

where t denotes time, Ex and Ey are the horizontal components of the geo-
electric field and a and b are the so-called system parameters that depend on
the electrical resistances and the topology of the power transmission system
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under investigation. Following the standard convention used for the geomag-
netic field recordings, x-axis points toward geographical north and y-axis
toward geographical east. Note that Eq. (1) is basically just Ohm’s law.

The horizontal geoelectric field in Eq. (1) can be obtained in many situ-
ations to a good approximation by computing

Ex(t) =
1

√
πµoσ

∫ t

−∞

dY (t′)/dt′√
t− t′

dt′ (2)

Ey(t) = − 1
√
πµoσ

∫ t

−∞

dX(t′)/dt′√
t− t′

dt′ (3)

where dY/dt′ and dX/dt′ are the time derivatives of the horizontal com-
ponents of the magnetic field, µ0 is the vacuum permeability and σ is the
ground conductivity. To arrive at Eqs. (2) and (3), one needs to assume that
the magnetic field on the ground varies as a linear function of the horizontal
distance, i.e. the second spatial derivative of the field vanishes, and that the
ground is homogeneous.

From Eqs. (2) and (3) it is clear that the time derivative of the magnetic
field can be considered as a “driver” of the geoelectric field and consequently
via Eq. (1) also the driver of GIC. As can be seen from the denominators
of Eqs. (2) and (3), the geoelectric field at a given time instant t contains
information about the past values of the time derivative of the magnetic field.
However, the greatest weight is on the most recent magnetic field values.
Thus, to simplify the GIC modeling process further, one can try making an
approximation

Ex(t) ≈ α · dY (t)/dt (4)

Ey(t) ≈ β · dX(t)/dt (5)

where α and β are some constants. By inserting Eqs. (4) and (5) into Eq.
(1) one finally obains

GIC(t) ≈ aα · dY (t)/dt+ bβ · dX(t)/dt (6)

which gives GIC as a linear function of the time derivatives of the horizon-
tal components of the magnetic field. Clearly, Eq. (6) is a result of some
violent approximations and should be used only to roughly estimate GIC.
See Pulkkinen (2003) and Section 2 for further details on the GIC modeling
process.
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1.2 Estimating GIC levels at the North American high-
voltage power transmission system

To test the adequacy of the approximations used to arrive at Eq. (6), GIC
data from one of the North American high-voltage power transmission system
nodes and magnetic field data from nearby Ottawa geomagnetic observatory
were used (Fig. 1). Fig. 2 shows one-minute GIC and the magnetic field
data from these locations for the period of October 24 - November 1, 2003,
which contains the Halloween storm event of October 29-31, 2003. The time
derivatives of the magnetic field were evaluated by using the three-point
formula

f ′(t) =
f(t−∆t)− f(t+ ∆t)

2∆t
(7)

Fig. 3 shows the scatter plots of the data in Fig. 2. It can be seen that
while dY/dt does not show any apparent correlation with GIC, dX/dt does
show a weak linear relationship with GIC. In another words, it is reasonable
to set a = 0 in Eq. (6) and model GIC by using a relation

GIC(t) ≈ k · dX(t)/dt (8)

where the linear coefficient k can be obtained by a linear fit to the data
in the top panel of Fig. 3. Least-squares fit gives k = −8.6 A·s/nT and
as is seen from Fig. 3, the linear fit does represent the general trend in the
data. Consequently, the model given by Eq. (8) can be used to estimate GIC
at the node based on the known time derivative of the x-component of the
magnetic field observed at the vicinity of the GIC site. It should, however, be
noted that the generated simple model is valid only for the chosen particular
GIC site. Generalizations to other sites require case-by-case validation of the
simplified modeling process.

2 Full simulation of the geomagnetically in-

duced current flow in a high-voltage power

transmission system

In this section, the basic steps required for the fully first-principles modeling
of GIC in an arbitrary power transmission system are briefly reviewed.
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Figure 1: The locations of the GIC station (circle, 45oN, 69oW) and the
Ottawa geomagnetic observatory (dot, 45.4oN, 75.6oW) used in the analysis.
Geographic coordinates are used.
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Figure 2: One-minute GIC and magnetic field data from the stations shown
in Fig. 1. The data is shown for the period of October 24 - November 1,
2003.
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Figure 3: Scatter plots of the data in Fig. 2. The line in the panel on the top
shows linear fit to the data. The fit gives a relation GIC(t) ≈ −8.6·dX(t)/dt.
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2.1 The derivation of the ground conductivity model
and the system parameters

As was seen in the section above, the first two steps in any detailed GIC
modeling involves the determination of the ground conductivity structure
and the system parameters. The system parameters can be computed for
any point in the power transmission system if the electrical resistances and
the topology of the system are known. By using Ohm’s and Kirchoff’s laws
GIC flowing through the grounding points of a power grid can be obtained
from the matrix equation (Lehtinen and Pirjola, 1985)

Ie = (1 + YZe)−1Je (9)

where Ze is the earthing impedance matrix and

Je
i = −

∑
j 6=i

Vij

Rij

(10)

and Y is the network admittance matrix

Yij =

{
− 1

Rij
i 6= j∑

k 6=i
1

Rik
i = j

(11)

and

−Vij =
∫ i

j
E · ds (12)

where E is the horizontal geoelectric field driving GIC, indices i and j indicate
grounded nodes of the system and Rij is the line resistance between nodes i
and j. The integration between nodes i and j is made along the conductor
connecting the nodes. Alternatively, if both the geomagnetic field and GIC
observations are available, one can determine the system parameters by the
cross-correlation technique introduced by Pulkkinen et al. (2007b). The tech-
nique adjusts the parameters a and b in Eq. (1) by studying the correlations
between GIC and the time derivative of the magnetic field.

Although it is often justified to assume that ground is homogeneous,
in detailed GIC studies one should use more complex ground conductivity
structures. The local conductivity structure can be estimated, in principle,
from the known geological properties of the crust. However, if again both
the geomagnetic field and GIC observations are available, one can invert the
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Figure 4: One-dimensional ground conductivity model derived by using the
geomagnetic field and GIC observations carried out at the stations shown in
Fig. 1. The cross indicates the resistivity (inverse of the conductivity) of the
terminating half-space.

conductivity structure by using the techniques familiar from the magnetotel-
luric sounding of the Earth’s crust and upper mantle (approximately within
depths of 1000 km > |z| > 100 m) (Pulkkinen et al., 2007b). The determi-
nation of the layered ground structure is quite involved process and requires
a robust determination of the surface impedance mapping geomagnetic field
fluctuations to geoelectric field fluctuations and the the usage of the surface
impedance in ill-posed non-linear inversion resulting in an one-dimensional
ground conductivity structure (see Fig. 4).

8



2.2 Computation of the geoelectric field and GIC

If in addition to the system parameters and the local ground conductivity
structure also the spatiotemporal behavior of the ionospheric current fluc-
tuations are known, one can carry out fully first-principles based modeling
of GIC. First, by using the known ground conductivity structure and the
spatiotemporal behavior of the ionospheric currents, one computes the geo-
electric field. A computationally efficient and a flexible way to do this is
to apply the so-called Complex Image Method (CIM) (Pirjola and Viljanen,
1998). In CIM the electromagnetic field induced on the surface of the Earth
is represented by image currents placed within the Earth. The complex depth
(this is the reason for the name of the method) of the image currents depends
on the frequency of the ionospheric current fluctuations and on the ground
conductivity structure. The only significant drawback of CIM is that the
method is applicable only to situations where the field-aligned currents flow-
ing to and from the ionosphere are perpendicular to the ionospheric plane.
This restricts the usage of the method to only high-latitude situations.

Once the geoelectric field E is known, one can use Eqs. (9)-(12) to com-
pute the GIC in the system, or coefficients a and b in Eq. (1) determined by
means of the cross-correlation method to map the geoelectric field to GIC.
The first experimental fully first-principles-based real-time GIC forecasting
system established at Community Coordinated Modeling Center (CCMC)
uses the cross-correlation method and the inversion of the geomagnetic field
and GIC observations to derive the system parameters and the ground con-
ductivity structure. Then, CIM is used to compute the geoelectric field
from the ionospheric output of a global MHD simulation of the Earth’s
magnetosphere-ionosphere system (Pulkkinen et al., 2007a). CCMC’s real-
time forcasting system is being developed in collaboration with the Electric
Power Research Institute.
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