Auroral Precipitation Model Validation – What has been done

- Started with equatorward boundary - discussed at previous mini-GEM workshops
- Discussed different boundary definition criteria (physical boundary based, threshold-based) – the document is posted at the CCMC website
- Invited the community’s participation in the model validation effort
- Participating models: old Hardy, New Hardy, Ovation Prime, Weimer, coupled global MHD model with Fok ring current model, AMIE
- Maj. Cory Lane (now Lt. Col. Lane) worked with CCMC on auroral model validation (paper of the results submitted to Space Weather Journal - Under review)
 - During low to moderate Kp conditions, Ovation Prime has the best prediction efficiency and OH (Old Hardy) closely follows. SWMF-Fok and AMIE suffer
 - High Kp: SWMF-Fok provides the best prediction efficiency
- Connecting auroral properties/boundaries to other important physical parameters/processes in the same region such as Poynting flux, Joule heating, field-aligned currents, or total electron content, etc. so that a better understanding of the ITM coupling can be understood. Some of these have been explored. More remains to be done.
Dusk:
Eqbn: equatorward disturbance of Poynting flux
Pobn: last local maximum on the poleward side
Nightside: Region 1 FAC vs Aurora Precipitation

Ohtani et al., 2009, JGR
Statistical relationship between FACs and e- precipitation

Southward IMF: e- precipitation occurred primarily within and near large-scale upward currents. The correspondence less evident for northward IMF.

Better correlation in the dusk sector than other local time sectors between FACs and e-precipitation (due to different physical processes operating in different local time sectors).

Figure 7. Statistical distributions of the electron energy flux observed in the Northern Hemisphere in 45° wide clock angle bins were color coded according to the color bar at the bottom of the panel, which has a maximum value of 5 erg/s/cm². The 2σ contours of the upward (red) and downward (grey) Birkeland currents from Figure 2 are overlaid on each distribution.