## Magnetic Reconnection

## Yi-Hsin Liu NASA-Goddard Space Flight Center/ University of Maryland

Dartmouth College





## Outline

A broad view on magnetic reconnection

Fundamental problems & research

- Reconnection rate problem
- Three-dimensional (3D) nature of reconnection

Summary

## Background -- All about the geometry & topology of magnetic field lines

#### Plasmas 4th state of matter > 99% of visible universe\* Fusion device

#### Plasma Lamp





Aurora Borealis







Lighting



Nebula



- Interaction between lots<sup>n</sup> of charge particles + electromagnetic fields
   -- complicated & nonlinear!!
- Long range electromagnetic interaction!!
  - -- the evolution CANNOT be described by thermodynamics.

## \*Footnote



## Solar Eruption







(Courtesy of SDO mission)

B~200 Gauss T~3,000,000 K (Courtesy of NASA)

- Energy up to 10<sup>32</sup> ergs is released in ~ 20 mins
   -- 40 billion atomic bombs!
- Matter up to 10<sup>10</sup> tons is erupted.



## Earth's magnetosphere





- Reconnection occurs at both the magnetopause & magnetotail.
- Reconnection at the magnetotail drives magnetospheric substorm & enhances aurora.

## A billion \$ NASA mission designed to study magnetic reconnection

Magnetospheric Multiscale Mission (MMS)





http://mms.gsfc.nasa.gov

tight tetrahedron formation: separation down to 7 km! 100x faster for electrons measurement (30 ms) 30x faster for ions measurement (150 ms)

• MMS leads us into a stage where the electron-scale physics of magnetic reconnection, in nature, can be resolved in an unprecedented manner!!

## The trailer of MMS ...



RESEARCH ARTICLES

Cite as: J. L. Burch et al., Science 10.1126/science.aaf2939 (2016).

#### Electron-scale measurements of magnetic reconnection in

#### space

J. L. Burch,<sup>1\*</sup> R. B. Torbert J. Gershman,<sup>5</sup> P. A. Cassak Nakamura,<sup>9</sup> B. H. Mauk,<sup>10</sup> Yu. V. Khotyaintsev,<sup>13</sup> P.-A Goldstein,<sup>1</sup> J. C. Dorelli,<sup>5</sup> L Cohen,<sup>10</sup> D. L. Turner,<sup>15</sup> J. 1 Petrinec,<sup>17</sup> K. J. Trattner,<sup>6</sup>] Lewis,<sup>1</sup> Y. Saito,<sup>20</sup> V. Coffey

<sup>1</sup>Southwest Research Institute, San Antonio, 1 College Park, MD, USA. <sup>5</sup>NASA, Goddard Spac London, London, UK. <sup>8</sup>West Virginia Universit Applied Physics Laboratory, Laurel, MD, USA. Physics, Uppsala, Sweden. <sup>44</sup>Royal Institute of <sup>17</sup>Lockheed Martin Advanced Technology Cen and Astronomy, Rice University, Houston, TX AL, USA.



#### PRL 116, 235102 (2016)

#### PHYSICAL REVIEW LETTERS

week ending 10 JUNE 2016

#### Magnetospheric Multiscale Satellites Observations of Parallel Electric Fields Associated with Magnetic Reconnection

R. E. Ergun,<sup>1,2</sup> K. A. Goodrich,<sup>1,2</sup> F. D. Wilder,<sup>2</sup> J. C. Holmes,<sup>1,2</sup> J. E. Stawarz,<sup>1,2</sup> S. Eriksson,<sup>2</sup> A. P. Sturner,<sup>1,2</sup> D. M. Malaspina,<sup>1</sup> M. E. Usanova,<sup>1</sup> R. B. Torbert,<sup>3,4</sup> P.-A. Lindqvist,<sup>5</sup> Y. Khotyaintsev,<sup>6</sup> J. L. Burch,<sup>4</sup> R. J. Strangeway,<sup>7</sup> C. T. Russell,<sup>7</sup> C. J. Pollock,<sup>8</sup> B. L. Giles,<sup>8</sup> M. Hesse,<sup>8</sup> L. J. Chen,<sup>9</sup> G. Lapenta,<sup>10</sup> M. V. Goldman,<sup>11</sup> D. L. Newman,<sup>11</sup> S. J. Schwartz,<sup>2,12</sup> J. P. Eastwood,<sup>12</sup> T. D. Phan,<sup>13</sup> F. S. Mozer,<sup>13</sup> J. Drake,<sup>9</sup> M. A. Shay,<sup>14</sup> P. A. Cassak,<sup>15</sup>

R. Nakamura,<sup>16</sup> and G. Marklund<sup>5</sup>

<sup>1</sup>Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, Colorado 80303, USA <sup>2</sup>Laboratory of Atmospheric and Space Sciences, University of Colorado, Boulder, Colorado 80303, USA <sup>3</sup>University of New Hampshire, Durham, New Hampshire 03824, USA <sup>4</sup>Southwest Research Institute, San Antonio, Texas 78238, USA <sup>5</sup>KTH Royal Institute of Technology, Stockholm, Sweden <sup>6</sup>Swedish Institute of Space Physics (Uppsala), Uppsala, Sweden <sup>7</sup>University of California, Los Angeles, Los Angeles, California 90095, USA <sup>8</sup>NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771, USA <sup>9</sup>University of Maryland, College Park, Maryland 20742, USA <sup>10</sup>Leurone University I curver, Belgium

### **@AGU**PUBLICATIONS



#### Journal of Geophysical Research: Space Physics

#### **RESEARCH ARTICLE** 10.1002/2017JA024004

#### Special Section:

(

Magnetospheric Multiscale (MMS) mission results throughout the first primary mission phase

#### Electron diffusion region during magnetopause reconnection with an intermediate guide field: Magnetospheric multiscale observations

L.-J. Chen<sup>1,2</sup>, M. Hesse<sup>1</sup>, S. Wang<sup>1,2</sup>, D. Gershman<sup>1,2</sup>, R. E. Ergun<sup>3</sup>, J. Burch<sup>4</sup>, N. Bessho<sup>1,2</sup>, R. B. Torbert<sup>4,5</sup>, B. Giles<sup>1</sup>, J. Webster<sup>6</sup>, C. Pollock<sup>7</sup>, J. Dorelli<sup>1</sup>, T. Moore<sup>1</sup>, W. Paterson<sup>1</sup>, B. Lavraud<sup>8,9</sup>, R. Strangeway<sup>10</sup>, C. Russell<sup>10</sup>, Y. Khotyaintsev<sup>11</sup>, P.-A. Lindqvist<sup>12</sup>, and L. Avanov<sup>1,2</sup>

## Briefing of MMS mission 02/25/2015 @ NASA headquarter



Moderator

NASA Headquarter

Project

Pl

Project **Scientist** 

Guest Researcher

## Astrophysical systems

o





time scale ~days

(Striani et al. 2011)



- Strong magnetic fields are dissipated quickly! ( $\sigma$ -problem)
- Relativistic reconnection could be important, and at other places like: Jets from active galactic nuclei (AGN)/ black holes Gamma-Ray bursts (GRBs)



## (fake) Fusion reactors in Hollywood

Doctor Octopus in Spider man I



## Laboratory plasmas Fusion device Reconnection Experiment

#### e.g., ITER Tokamak @ France



#### MRX @ PPPL





TREX @ U. Wisconsin

> LAPD @ UCLA

• Reconnection causes the Sawtooth crashes in Tokamak!



# Honey, I Blew Up the Tokamak



+ Play Audio | + Download Audio | + Join mailing list

August 31, 2009: Magnetic reconnection could be the Universe's favorite way to make things explode. It operates anywhere magnetic fields pervade space--which is to say almost everywhere. On the sun magnetic reconnection causes solar flares as powerful as a billion atomic bombs. In Earth's atmosphere, it fuels magnetic storms and auroras. In

laboratories, it can cause big problems in fusion reactors. It's ubiquitous.

## Fundamental problems & research

## 1/2. Reconnection Rate Problem

- How quickly can reconnection process magnetic flux?

## Magnetic tension & Alfvén waves



vibration of guitar strings



(Youtube: iphone 4 inside a guitar oscillation! VERY COOL!)

## Sweet-Parker solution (1957)



- However, this model has a small  $\delta/L$ , the rate is too small to explain the time-scales in solar flare. (Parker 1963)
- To explain the flares, it requires R~ 0.1. (Parker 1973)

## Petschek solution (1964)



Reconnection rate is much larger because 
$$R \sim rac{\delta}{L} \uparrow$$

• However, this is not a self-consistent solution. (Sato & Hayashi, 79; Biskamp, 86)

\*aspect ration  $\equiv$  aspect ratio of the diffusion region

## Reconnection in particle-in-cell (PIC) simulations



- The diffusion region is localized like the Petschek solution.
- Why PIC? Why not using magnetohydrodynamics (MHD)?
  - -- because PIC captures the key physics that breaks the frozen-in condition in nature.

## GEM Reconnection Challenge (2001)

(Birn et al. 2001)



\* the importance of Hall term in Ohm's Law was debated for the past 16 years. (Sonnerup 79)

 A similar reconnection rate R~ 0.1 is reported in most models & over a wide parameter range!

## To be solved.

Q:Why is the fast reconnection rate order 0.1 in disparate systems? -- including PIC, hybrid, Hall-MHD, MHD with a localized resistivity...etc

\*clue: can not be the diffusion-scale physics!



It turns out that when  $\delta/L 
ightarrow 1$  ,  $\ R 
ightarrow 0$  !

-- Hey~ then there should be an optimized R<sub>max</sub> in between! -- This R<sub>max</sub> may explains the value 0.1 !

## Explanation of rate $\sim 0.1$

-- Geometrical consideration!

In the large  $\delta/L$  limit .....



• Constraints imposed at the inflow & outflow region (upper) bound the rate!



- Reconnection tends to proceed near the most efficient state with R  $\sim$  O(0.1). V
- Nicely, rate is insensitive to  $\delta/L$  near this state.  $\checkmark$

QI: Why fast rate  $R \sim O(0.1)$ ?

Q2: Why is reconnection slow in the resistive-MHD case?





requires more thinking...

## 2/2. Three- dimensional nature of reconnection

- How about the freedom coming from the extra dimension?



Distinct 3D features, including

- flux ropes.
- kink instability.
- turbulence.



Q:What is causing this? consequence?

## To be solved.

## Q:What is causing the bifurcation of electron diffusion region?



\*clue: bifurcated layer is located in between these intertwined flux ropes. & tearing modes give rise to these flux ropes!

-- oblique tearing modes!



• 2D only allows the parallel tearing mode. i.e., no bifurcation.

-- oblique tearing modes!



• 3D allows a spectrum of oblique tearing modes, unlike 2D.

-- oblique tearing modes!



• Bifurcated or Not, depends on the competition between oblique & parallel tearing modes!

-- oblique tearing modes!



- The most unstable tearing mode should dominate!!
- Theory predicts that the oblique mode dominates when  $B_{y0}/B_{x0} > 1$ .

## **Open Questions**

With a thicker current sheet, like that in the solar flare



Lots of resonant surfaces are possible!

Q: How do these oblique tearing modes interact & volume-fill the current sheet? Q: Reconnection rate? Energy dissipation? Particle acceleration??

(Fermi-type acceleration? or direct acceleration?)

## Summary

- Magnetic reconnection is an important energy release process in plasmas, and it is relevant in space, solar, astrophysical & laboratory plasmas.
- Reconnection rate problem & 3D nature of reconnection are discussed.
- Reconnection is relevant to many exciting on-going & future projects: MMS, Solar Prob +, FLARE, TREX, LAPD, ITER, HAWC,.....etc.
- Nowadays, simulations and analytical techniques allow us to study a wide range of problems in plasmas physics.
- Lots of interesting problems; Lots of opportunities for students.

#### An example run shows the imbedding effect



- Reduction of the reconnecting field immediately upstream of the diffusion region (micro-scale) is observed.
- Local reconnection rate  $R_0 \sim O(0.1)$  does not go up even when the micro-scale rate  $R_m$  goes up to  $\sim O(1)$ .

Let a fluid filament initially following the closed contour S be given and let  $\Phi$  be the initial flux of B through it. A short interval dt later, each element dl of the contour will have been displaced by an amount  $\mathbf{v} dt$ , sweeping in the process an area  $(\mathbf{v} \times \mathbf{dl}) dt$  (Figure 1). In this time interval,  $\Phi$  changes by an amount  $d\Phi$ , ascribable



Fig. 1.

to two causes. The time variation of the field contributes the surface integral

$$\int_{s} \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{A} dt \tag{4-4}$$

while the variation of the area bounded by the filament adds the flux through the area swept by it (Figure 1), equaling

$$\oint \mathbf{B} \cdot (\mathbf{v} \times \mathbf{d} \mathbf{l}) \, \mathrm{d}t = -\int \nabla \times (\mathbf{v} \times \mathbf{B}) \cdot \mathrm{d}\mathbf{A} \, \mathrm{d}t \tag{4-5}$$

Thus

Combined with

Faraday's law

$$d\Phi = \int \left(\frac{\partial \mathbf{B}}{\partial t} - \nabla \times (\mathbf{v} \times \mathbf{B})\right) \cdot d\mathbf{A} \, dt \qquad (4-6)$$
$$d\Phi = 0 \quad (\text{Frozen-in}) \quad \text{if} \quad \mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c} = \nabla P$$

Q: How could special relativity affect reconnection?



Reconnection rate can be enhanced?

## Scaling of micro-scale inflow speed & reconn. rate



Lorentz contraction + geometry factor ~ 0.1 (Liu et al., PRL 2015) 

$$\rightarrow \frac{V_{in}}{c} = 0.1 \sqrt{\frac{\sigma_x}{1 + \sigma_g + 0.01\sigma_x}}$$

GEM Reconnection Challenge (2001)



Q: Why is the fast rate  $R \sim 0.1$ ?