PIC simulation services at the CCMC in support of MMS mission

Yi-Hsin Liu Masha Kuznetsova Lutz Rastaetter Asher Pembroke Michael Hesse

The era of MMS

Magnetospheric Multiscale Mission (MMS)

March 13, 2015 ATLAS rocket @ Kennedy Center, FL

http://mms.gsfc.nasa.gov

tight tetrahedron formation: separation down to 7 km! 100x faster for electrons (30 ms) 30x faster for ions (150 ms)

- MMS leads us into a stage where the electron-scale physics of magnetic reconnection, in nature, can be resolved in an unprecedented manner!!
- PIC simulations can self-consistently model these electron-scale physics.

Spacecraft orbit on October 16, 2015

Encounter of the electron diffusion region!

MMS2

(Burch et al. SCIENCE 2016) magnetosphere magnetopause magnetosheath X-line/dissipation region Magnetopause 50 25 BL BLMN N (km) Magnetosphere (LU) Magnetosheath BM 0 136 271 -136 0 -25 (a) в, s⁻¹cm⁻²ster⁻¹ 100543 87654 678 10000 10 b (eV) lons 1000 100 10008 Electrons C 1000 (eV) 100 5 339 MMS Separatrix 18 28 15 (cm.3) 10 -(d) z When Inflow 200 VIL V_{i,LMN} (km/s) 0 L (d.) (km) VM Dissipation 0 -200 (e) jet reversal jet ViN -400 1500 IV₁₁ (km/s) fast e jet 1000 X-line -(f) I^⊺>I 500 IV_{el}I -5 -339 (µA/m²) Iplasma E-(g) intense current -1 Μ Ν (JuA/m²) J_{V×B} -1 = (h) -678 -10 -2 150 Tell strong heating) 2 N (d_i) -2 4 T_e (eV) 0 100 50 Tel (1)28 -0.46 02 0.43 0.88 1.33 (µA/m2) EL strong E JM (m//m) ELMN EM -0.06 3.25 -1.71 1.60 4.91 (B/d) -10 EN -(j) MMS₂ 1306 30 Seconds 2015 Oct 16 1307 Time(UT) ER~ 1-5 mA/m VA~ 400 km/s vthe,sph~ 6,000 km/s; vthi,sph~ 300 km/s

More signatures of electron diffusion region...

Electron distribution inside reconnection diffusion region

2015 October 16

One of the popular distributions: Crescent

PIC services at the CCMC

I. Help interpret particle distributions at geometrically important locations.

- 2. Help determine the LMN coordinate.
- A potential science project that joints effort of MMS observation, local PIC & Global MHD simulations to evaluate the importance of local versus global physics in controlling the x-line orientation.

Service I:

Help interpret particle distributions at geometrically important locations.

We have generalized the initial condition

• The upstream conditions cover a wide range of variety.

Step I: Give us the upstream condition

Step 2: We make a run, generate fields, moments & distributions

 z/d_e

Quick-look:

- Field-aligned boxes.
- @ Geometrically important locations.
- ~ 7 x 7 boxes should be enough for a quick look.

User specification:

• You can request your own boxes.

Step 2: We make a run, generate fields, moments & distributions

Step 2: We make a run, generate fields, moments & distributions

Run on Request (RoR) of PIC simulations at the CCMC

Run on Request

We have generalized the initial condition

$$B_{x2}$$
 B_{y2} n_2 T_2 V_{x2} V_{y2}

- An user can request a run with customized upstream conditions.
- -- CCMC generates particle distribution & field & moment.
- -- All data is published on-line & can be analyzed interactively using tools on CCMC.

Profile employed

$$B_x = b_0 [1/2 + \alpha_1 \tanh(z/L)]$$

$$B_y = b_0 b_g$$

$$n = \alpha_3 [1 - \alpha_2 \tanh(z/L)]$$

$$T = [\alpha_4 - B_x^2/2]/n$$

$$V_x = \alpha_5 \tanh(z/L)$$

$$V_y = \alpha_6 \tanh(z/L)$$

& arbitrary rotation respected to z-axis is possible.

* Note, the pressure balance in the z-direction is always satisfied.

MMS science event (Burch et al., 2016)

Observer-inputs		Mode
% in nT B _{IL} =-23; B _{IM} =-2.278; B _{2L} =39; B _{2M} =-2.278;		m _i /m _e
% in km/sec V_{1L} =-80; V_{1M} =-150; V_{2L} =0; V_{2M} =0;	converting into code input	W_{pe}/W B_{x2}/B_{y} $n_{2}/n_{1}=$ $T_{2}/T_{1}=$ $B_{g1}=-0$ $W_{x_{shea}}$ $V_{y_{shea}}$ $V_{A1}/c=$
%in I/cm^3 n ₁ =11.3; n ₂ =0.7;		
% in eV T _{e1} =28; T _{e2} =95;		
$T_{i}/T_{e} = 10.0;$		u

Modeler-inputs

```
=25
=10.0
v<sub>ce</sub>=4.0
×I=-1.6957
=0.061947
=3.3929
0.14238
0.14238
e_{ar}/V_{A1} = -0.26817 \times 2
e_{ar}/V_{AI} = -0.50282 \times 2
=0.0719
 determining
1 - 6
```

The prototype run size

mi/me=25 particle/cell=200 $Lx \times Lz = 51.2di \times 25.6di$ nx x nz = 1024 x 512 wpe/wce=4.0

resource required: 256 CPUs x I hour ~ 256 CPU-hours Particle data/frame ~ 3 GB Total fields & moments data ~ 3 GB

A customized run for the event in the SCIENCE paper

http://ccmc.gsfc.nasa.gov/RoR_WWW/PP/PIC_DIST/2016/ Lutz_Rastaetter_20161121_PP_1/Lutz_Rastaetter_20161121_PP_1.php

Quick view

A customized run for the event in the SCIENCE paper

http://ccmc.gsfc.nasa.gov/RoR_WWW/PP/PIC_DIST/2016/ Lutz_Rastaetter_20161121_PP_1/Lutz_Rastaetter_20161121_PP_1.php

We are accepting order~

• For now, eMail to Lutz.Rastaetter@nasa.gov with the following information

% in eV T _{e1} T _{e2} T _i /T _e	

we will design & conduct a run, publish it on-line, then notify you.

• Lutz is in the process of designing the on-line interface for the Run on Request (RoR)!

Demo by Lutz