Science of Coronal Mass Ejections (CME)

S. K. Antiochos, NASA/GSFC

- 1. Observations
 - Physical properties
 - Quantitative properties
- 2. Underlying Physics
- 3. Theories/Models

Science of Coronal Mass Ejections (CME)

S. K. Antiochos, NASA/GSFC

- 1. Observations
 - Physical properties
 - Quantitative properties
- 2. Underlying Physics
- 3. Theories/Models
- Rules of the Seminar Road
 - Do Tailgate!
 - Do Backseat Drive!

LASCO C3 Observations of Outer Corona

LASCO C3 Observations of Outer Corona

- Coronagraph: 5 30 R s FOV, Cadence ~ 1 hour
- Thomson scattering of photospheric white light $-I \sim \int n_e dl$
- Observe solar wind structures
 - $V \sim 400 \text{ km/s}$
- $\sim 3 \text{ CMEs/day}$
 - Some with V > 1,000 km/s
 - $\ C_s \sim 10^{4.2} \ T^{1/2} \sim 100 km/s$
 - $V_A \sim 10^{11.3} B n^{-1/2} \sim 100 km/s$
 - Therefore, must have Interplanetary shock
 - Produces intense Solar Energetic Particle bursts
- Need to see coronal origins

Origins of All Solar Activity

- B-field lines act ~ as material lines, $\tau \sim L^2/\eta >> 10^6$ years
- Couples corona to slow (<< V_A) photosphere flows
 - Provides both free energy and topological complexity
 - Drives both large and small events

Solar Origins of CMEs

- SDO HE 304, ~ 80,000 K + LASCO C3
- Dark implies cool and dense prominence/filament

Filament Ejection and Flare

Solar Origins of CMEs

- TRACE (EUV telescope) observations of 06/16/2005 event
 - Observe Fe XIX 171A line formed at $T \sim 1.0 \text{ MK}$
 - Very high cadence < 1 m, and resolution ~ 700 km
- Cool (< .01 MK) dense prominence/filament lying below coronal loops (seen in absorption)
 - Loop height ~ 50 Mm, filament height < 5 Mm
 - But note, grav. scale height $H_g \sim 10^{3.7}$ T cm
 - Loop plasma supported by its internal pressure, but prominence plasma must be supported by magnetic field
- Coronal loops open and reform during ejection
- <u>All CMEs/flares associated with filament</u> <u>magnetic structure</u>

Filament Properties

8688 A

He [[304

- Always lie above photospheric polarity inversion line
- Fairly common, ~ 50 % coverage, both active & quiet
- Origin is one of the outstanding problems in solar physics

Recap of CME Properties

- "Typical" event consists of 3 components:
 - Ejection of filament/prominence field and mass
 - Ejection of coronal magnetic field and mass
 - Heating of > 10MK flare coronal loops and acceleration of flare particles
- Strength of each component can vary between events, but all are present to some degree – How are they related?
- What is role of photosphere?

Role of Photosphere

Role of Photosphere

- Filament overlies polarity inversion line (PIL) low lying
- Filament field strongly non-potential (large free energy)
 - Only place in corona where field observed to have high stress!
- Photospheric B-field does not evolve during eruption
- Energy buildup slow compared to eruption 1 km/s

<u>CME Quantitative Properties</u>

- For large event: M ~ 10¹⁶ gm, V ~ 1,000 km
 - $E \sim 10^{32}$ ergs, t ~ 10^3 s, Power ~ 10^{29} ergs/s
 - $L \sim 10^{10} \text{ cm}, \text{ W} \sim 10^9 \text{ cm}, \text{ F} \sim 10^{10} \text{ ergs/cm}^2/\text{s}$
 - note that F ~ 10³ active region heating also much larger than chromospheric heating
- Plasma plays negligible role in energetics
 - active region: T ~ 10^{6.5} K, N ~ 10^{10.5}/cm³, E_G ~ 10 ergs/cm³

$$B \sim 10^{2.5} \text{ G}, \quad E_{B} \sim 10^{3.5} \text{ ergs/cm}^{3}$$

- also gravitational potential energy, $M g_{sun} H \sim E_G << E_B$

<u>Basic CME Scenario</u>

- CME/eruptive flare due to explosive release of magnetic energy stored in corona
- 1. Magnetic shear continually builds up low down over PILs creating pre-CME equilibrium
- 2. Equilibrium disrupts and whole system expands outward at Alfvenic speeds
- 3. Closing and relaxation of opening field lines produces flare heating and particle acceleration
- 4. Rapid drop-off of V_A with height produces IP shock, $V \sim r^{-3}$

Basic CME Cartoon

(Courtesy, T. Forbes)

Underlying CME Physics

- Closest terrestrial analogy is volcano
 - Disruption of force balance between upward push and downward pull
 - Fast removal of downward pull results in supersonic expansion
- On the Sun, this must all be done with smoke and magnetism
 - Filament channel field provides upward push and free energy
 - Overlying coronal field provides downward pull
 - But field lines cannot break!!

Pre-CME Force Balance

Consider Lorentz force of filament channel and overlying field: $J \times B = (\nabla \times B) \times B = -\nabla(B^{2}/2) + (B \cdot \nabla) B$ $= -\nabla_{\perp}(B^{2}/2) + B^{2}(i_{B} \cdot \nabla) i_{B}$ magnetic pressure magnetic tension

Recap of CME Physics

- For some reason magnetic shear concentrates at PILs producing filament channels
 - Exact topology unclear (especially twist)
- Filament field held down by overlying nonsheared coronal field
 - Need some mechanism to disrupt force balance catastrophically
 - Must find mechanism for rapidly removing overlying field
 - Simply continuing the shearing does not do it! As shown by many simulations

Demonstration of Non-Eruption

(from, DeVore et al, 2005; Aulanier et al, 2005)

- Bipolar (one polarity inversion line) initial magnetic field
- Filament-field formation by shearing and reconnection
- See pronounced expansion & kinking but no eruption

Non-Eruption

Underlying physics:

- Corona has no lid
- Magnetic field lines can stretch indefinitely without breaking
 - Free to open slowly in response to photospheric stress and gas pressure (rather than erupt as CME)
- Slow opening (not associated with filament channels) observed to occur continuously in large-scale corona

Theories for Eruption

- Non-ideal evolution
 - Magnetic field line topology changes due to reconnection
 - Small change in topology permits large rearrangement of field
 - Removes overlying field
- Ideal instability
 - Twisted field lines can "kink" or "buckle"
 - Separate or push overlying field out of way
- Both appear to "work" in numerical simulations

NUMERICAL SIMULATIONS

- Solve 3D or 2.5D ideal/dissipative MHD with variety of numerical schemes
 - Both explicit and implicit
 - Both fixed and fully amr grids
 - Both Cartesian and spherical grids
- Initial conditions:
 - Usually equilibrium with varying degree of complexity
 - Simple dipole to observed photospheric fields with solar wind
- Boundary Conditions:
 - Open conditions at outer boundaries
 - Photospheric conditions main discriminator between models
 - Simple shear to incomprehensible contortions

NUMERICAL SIMULATIONS

- Term "simulation" is misnomer
- Simply method for obtaining approximate solutions to standard equations
- Drastic change in theory techniques, but still comes down to physical insight
- Numerical simulation slowly turning into user-friendly community tools

ARMS NUMERICAL SIMULATIONS

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{v}) = 0$$

$$rac{\partial
ho ec v}{\partial t} + ec
abla \cdot (
ho ec v ec v) = -
abla P + rac{1}{c} ec J imes ec B -
ho ec g$$

$$rac{\partial U}{\partial t} + ec{
abla} \cdot (Uec{v}) = -P(ec{
abla} \cdot ec{v})$$

$$rac{\partial B}{\partial t} - ec{
abla} imes (ec{v} imes ec{B}) = 0$$

- Ideal MHD eqtns. (but numerical resistivity)
 - Use non-conservative energy equation for low-beta systems
 - Spherical grid with adaptive mesh refinement

Reconnection-Driven CME Models

• Breakout:

- Magnetic reconnection removes overlying field, decreasing downward pull
- Need topologically complex field
 - -More than 1 dipole
 - -Generally present on Sun

Non-Dipole Coronal Topology

- Field of two dipoles axi-symmetric
 - Large global at Sun center, weaker near surface
 - Produces 4-flux system with separatrix bdys, and null

Magnetic Reconnection

- Frozen-in condition:
 - B-field lines ~ constants of the motion
 - Produces topological complexity and all solar activity
- Even in corona have finite diffusion, $t \sim L^2 / \eta$ >> 10⁶ years, for L ~ 1 Mm
 - If L sufficiently small, field lines lose identity and can "reconnect" on short time scales, but only over localized region
 - Need to develop quasi-singular magnetic gradients for reconnection to be effective
 - Magnetic topology plays critical role

Breakout Model Breakout CME b а С d 82500 s 0 s

(Karpen et al 2012, Guidoni et al 2016)

Breakout Model

- 3D simulation using 3D AMR code Lynch et al
- "Create"
 prominence by
 simple
 boundary flows
- Reproduces standard features of CMEs/flares

Ideal Instability/Loss of Equilibrium

- Either kink or torus instability
- Part rather than remove overlying field
- Need twisted flux rope
 - Sturrock, Fan, Kliem, ...

Aneurism Model

- 3D simulation by Fan et al.
- System driven only by flux "emergence"
- Kink or torus instability depending on overlying field
- Must assume initial magnetic twist structure

t=0.

Models for CME Initiation

- Apparently have two mechanisms that can produce explosive CMEs in 3D simulations:
 - Reconnection (Breakout), ideal instability/loss-ofequilibrium
- Both require sheared prominence field
- Both produce twisted flux rope as a result of eruption
 - Flare evolution similar for both
- Ideal instability requires twisted flux rope before eruption

<u>64K Question</u>

- What is the pre-eruption structure of the prominence field?
 - Clearly has strong shear
 - Does it have twist (twisted flux rope topology)

• NRL VAULT image of 06/16/02, 20K material, spatial resolution < 200 km

• Little evidence for twist in either structure or motions, but exact topology still unclear

