PIC simulation services at the CCMC in support of MMS mission and GEM Magnetic Reconnection Focus Group

Yi-Hsin Liu
Lutz Rastaetter
Masha Kuznetsova
Michael Hesse

Outline:

- Previous successful comparisons between Particle-in-Cell (PIC) simulations
\& in-situ observations
- The era of MMS
-- why needs PIC Now?
- Currently Planned Services
-- Help find the electron diffusion region
-- Help optimize the LMN coordinate
- Potential Science Project
- Summary

Comparisons between in-situ observations \& PIC

-- kinetic-scale

Example I: lons temperature anisotropy

Example 2: Energy conversion

PIC

(Haggerty et al. GRL 2015)

THEMIS

Observation
(Phan et al. GRL 2014)

$$
\begin{aligned}
\Delta T_{i} & \sim 0.13 m_{i} C_{A}^{2} \\
\Delta T_{e} & \sim 0.016 m_{i} C_{A}^{2}
\end{aligned}
$$

- Energy partition between electrons and ions.
- Non-thermal acceleration. (Drake et al. Science 2006;

Example 3: Occurrence distribution of MR

MR is suppressed by diamagnetic drifts $\Delta \beta \gg 2\left(L / \lambda_{i}\right) \tan (\theta / 2) \longleftarrow$ From PIC (Swisdak et al. JGR 2003)

Earth (Phan et al. 2013 GRL, THEMIS)

Earth

Solar Wind
(Phan et al. 2010 APJ, Wind)

Mercury (DiBraccio et al. 2013 JGR , MESSENGER)

- Kinetic physics that affect the dynamics of reconnection.

The era of MMS

Magnetospheric Multiscale Mission (MMS)

```
~ one year ago
```


$\begin{array}{ll}\text { http://mms.gsfc.nasa.gov } & \begin{array}{l}\text { 100x faster for electrons }(30 \mathrm{~ms}) \\ 30 x \text { faster for ions }(150 \mathrm{~ms}) \\ \text { separation down to } 10 \mathrm{~km}\end{array}\end{array}$

- MMS leads us into a stage where the kinetic physics in the electron-scale can be closely compared with PIC in an unprecedented manner!!

For instance,

What breaks the frozen-in condition?

$$
\begin{gathered}
\text { In electron-scale... } \\
e n_{e}\left(\mathbf{E}+\mathbf{V}_{e} \times \mathbf{B}\right)_{y} \\
=-m_{e} n_{e} \mathbf{V}_{e} \cdot \nabla \mathbf{U}_{e y} \\
-\left(\nabla \cdot \mathbf{P}_{e}\right)_{y} \\
-m_{e} n_{e} \partial_{t} \mathbf{U}_{e y}
\end{gathered}
$$

PIC simulation

(Hesse et al. 2004; Horiuchi et al. 2002;
Ricci et al. 2002; Liu et al. 2014)

- The close deployment of the 4 MMS spacecrafts will allow human kind to measure this, for the first time, in nature!! --p.s. No laboratory plasma experiment can measure this, so far, and in the short future.

Service I:

Find the electron diffusion region!
 -- using particle distributions

Signature of diffusion region crossing:
(Li-Jen Chen et al. 2009 using CLUSTER)

- Jet reversal +Walén test.
- B_{n} sign change
- finite $E+V_{e} \times B$ (Doable now with MMS!!!)
- finite J.E’
(Zenatani et al. PRL 20II)
- Non-gyrotropy (Swisdak GRL 2015;
Auni et al. POP 2013;
Scudder et al.JGR 2008)
Observations

We have generalized the initial condition

- It turns out that 2D approximation seems to be reasonably good! -- as shown in the comparison between MMS data \& 2D PIC

Step I: Give us the upstream condition

Step 2: We can generate a map of distributions

- We can also predict the drift speed of the x-line under shear flows \& diamagnetic drifts!

Step 2: We can generate a map of distributions 10
(e.g., Shuster et al. 2015)

$$
V_{z} 0
$$

PIC simulation

One of the popular distributions: Crescent

Field line coordinate

PIC simulation

- Help figure out the trajectory of spacecrafts.

Field line coordinate

Full 3D distributions

How can we use these distributions?

- Explaining the particle distribution in MMS.
- A 2D-map helps determine the trajectory of spacecrafts.
-- Help find the electron diffusion region.
- Identify the mechanism that breaks frozen-in.
-- non-gyrotropic feature
- Study the particle energization, particle mixing.
- Study the partition between electrons and ions.
- Study the temperature anisotropy, and its potential effect.
-

CCMC online interface /show me the crescent!

Community
Coordinated
Modeling
Center

CCMC mission statement

The CCMC is a multi-agency partnership to enable, support and perform the research and development for next-generation space science and space weather models.

Register to Attend Space Weather REDI Bootcamp

Registration is now open for the next Space Weather Bootcamp to be held on June $7-17,2016$. The past Bootcamp in summer of 2015, attended by over 50 participants from multiple countries, proved a great success (view Bootcamp tutorials).

Bootcamp information and agenda

CCMC Services

- We provide, to the scientific community, access to modern space research models
- We test and evaluate models
- We support Space Weather forecasters
- We support space science education

Flare Scoreboard Planning

CCMC, together with the UK Met Office, is in the planning phase for the development of a community "Flare Scoreboard" which will show probabilistic flare forecasts from a variety of models. Click here to learn more about the flare scoreboard and to join the planning.

CME Arrival Time Scoreboard

CME arrival time predictions from the research community

- Access the CME Scoreboard

CCMC online interface /show me the crescent!

About
View Results
Instant Run Metrics and Validation
Education
R2O Support

View Results of Requested Runs

View the results of your requested run as well as the results of runs submitted by other users.
CCMC Publications Policy
If you use the results from the Runs on Request in a scientific publication or presentation, please acknowledge the originators of the computational model and the CCMC. For more details see the detailed policy description.

Note: For tracking purposes for our government sponsors, we ask that you notify the CCMC whenever you use CCMC results in scientific publications or presentations by emailing CCMC.

View Simulations of Special Sun-Earth Connection Events

Search the Simulation Results Database

Search and view simulation results for all model runs executed at the CCMC over the last four years. We maintain a comprehensive searchable and sortable database of all executed runs.

The CCMC Kameleon Software
Kameleon is a software suite that is being developed at the CCMC to address the difficulty in analyzing and disseminating the varying output formats of space weather model data.

CCMC online interface /show me the crescent!

LOCAL PHYSICS SIMULATION RESULTS

Perform advanced search or simple search in full database.

- View ALL Local Physics Runs on Request
- View Runs for the following Model(s):

PAMHD

- PIC-Hesse

VPIC
P3D
view runs

- Check Run Status:

Enter Run Registration Number: \qquad
CHECK STATUS

- SEARCH Local Physics requests database for string(s):

Note: At present we do not support multiple string search, so please only enter one string (e.g., either one last name or requestor, one run number - such as John_Doe_20110130_LP_1 - or one first name) in this field.
If searching for a date, use the following format: YYYY/MM/DD.

CCMC online interface

/show me the crescent!

-Runs on Request: Simulations Results

Total Number of Runs in the Database: 94
Total Number of Search Results in this Database: 1

Status	Run Number	Title	Key Words	Model	Model Version	Grid	Validation Level	Simulation Type	Coordinate System	Dim.	X_{o}	\mathbf{X}_{1}	\mathbf{Y}_{0}
published		2D Asymmetric reconnection	MMS Support, 2D Asymmetric reconnection, SSW16	PIC-Hesse	20150219	$(1000) \times(1) x(800)$	0	Harris Sheet along X with added Bx	uniform Cartesian	2D	0.00000	64.00000	0.00000

- 9 OBㅜ웅

CCMC online interface

/show me the crescent!

Model Type: LP/PIC/
Model: PIC-Hesse version 20150219
Initial Configuration: Harris Sheet along X with added Bx

Run parameters:

- proton/electron mass ratio: $\mathbf{2 5 . 0 0 0 0}$
- electron/proton temperature ratio: 0.2
- electron cyclotron/electron plasma time ratio ($\omega_{\text {pe }} / \omega_{\text {ce }}$): 2.00000

Boundary parameters (N and P averaged for each particle species):

Quantity	bottom $(\mathrm{Z}=-\mathbf{1 2 . 8 0 0 0})$	top $(\mathrm{Z}=\mathbf{1 2 . 8 0 0 0 0})$
B_{x}	-0.50000	1.50000
$\mathrm{~B}_{\mathrm{y}}$	0.00000	0.00000
$\mathrm{~B}_{\mathrm{Z}}$	0.00000	0.00000
$\mathrm{~N}_{\mathrm{e}}$	0.99700	0.33000
P_{e}	0.24900	0.08300
$\mathrm{~N}_{\mathrm{i}}$	0.99700	0.33000
P_{i}	1.24500	0.41300

Select 3D distribution function (in velocity space) by Region-of-Interest (ROI) from one of these ROI maps:

- Select ROI map 1
- Select ROI map 2
- Select ROI map 3
- Select ROI map 4
- Select ROI map 5

particle distributions
- View 2D fields output

CCMC online interface

/show me the crescent!

Run: Michael_Hesse_20150219_2

Model at CCMC: PIC-Hesse
Move through adjacent ROIs:

- Along Z:
- between $X=30.5$ and 31.1
- between $X=31.7$ and 32.3

CCMC online interface /show me the crescent!

```
3D-Surface, 3D-Flowlines, Color Contour on Sphere:
View angles:
AX [-90..90]: 30 (viewer's elevation angle)
AZ [-180 ... 180]: 30 (viewer's azimuth angle; 0: along
negative Y)
Color Contour, (Vertical) Line:
    Color table: Rainbow©
    \square \text { Reverse Colortable}
    Number of levels: }3
    Lock color range:
    Min.: -1 Max.: }
    Log scale (use all data>0 in non-negative fields)
Contour:
    show values with contour levels
    32 Number of Levels
    Lock range:
    Min.: 0 Max.: 
    Log scale (use all data>0 in non-negative fields)
```


Choose Plot Area:

All Plot Modes except Line Plot and Vertical Plot: Select lower left corner of plot area on the left, and the upper right corner on the right.
Line Plot: Select start point of line on the left, the end point on the

right.

Vertical Plot: Select Vx and Vy position on the left.

Vx_{1}	-11		Vx_{2}	11	Range: $-11 \ldots$	11
Vy_{1}	-11	Vy_{2}	11	Range: $-11 \ldots$	11	
Vz_{1}	-11	Vz_{2}	11	Range: $-11 \ldots$	11	

Choose C	lane:
$\mathrm{Vx}=$ constant	0
Vy=constant	0
$\mathrm{Vz}=$ constant	0

Reset Form Rgset Form will reset changes to the defaults specified by the previous run of this script.
Update Plot Opdate Plot will update (generate) the plot with the chosen time and plot parameters above.

CCMC online interface

/show me the crescent!

Community
Coordinated
Modeling
Center

About
Models at CCMC Request A Run View Results Instant Run Metrics and Validation

Please wait - computation is estimated to take o minutes and 5 seconds.
A "." will appear for each 5 seconds elapsed.

[^0]
Service II:

Help determine the reconnection plane i.e., Help optimize the LMN coordinate

- Minimum Variance Analysis (MVA) determines N, while L is the direction of the maximum eigenvalue, but B_{L} is not necessary the reconnecting component!

Service II:

Help determine the reconnection plane i.e., Help optimize the LMN coordinate

- Minimum Variance Analysis (MVA) determines N, while L is the direction of the maximum eigenvalue, but B_{L} is not necessary the reconnecting component!

Service II:

Help determine the reconnection plane i.e., Help optimize the LMN coordinate

- Minimum Variance Analysis (MVA) determines N, while L is the direction of the maximum eigenvalue, but B_{L} is not necessary the reconnecting component!

Step I: Give us the upstream condition \& N
Step2: We can perform a scan of 2D simulations at different clock angles Step3: We determine the plane of maximum rate, outflow speed,....etc
(Sonnerup 1974; Gonzalez \& Mozer I974; Swisdak \& Drake 2007; Cassak \& Shay 2007; Schreier et al. 20IO; Hesse et. al. 2013; Liu et al. 2015....etc)

- The derived LMN for this event seems to agree with the maximum Ereconn.!
- Now, we can handle arbitrary asymmetric guide fields, shear flows and diamagnetic drifts.
- User feedback?

Potential Science Project
 -- Local vs. Global

- A project that may connect observation, global and local simulations!
- If possible, comparison with embedded-PIC simulations will also be interesting. (e.g., Daldorff et al. 2014 Toth et al. 2016)

Summary
 --Why do we need PIC in CCMC?

- rich kinetic physics.
- full particle distributions.
- self-consistent particle energizations.
- self-consistent moment closure.
- capture the physics that breaks the frozen-in condition.
- correctly describe the local physics that controls x-lines.
- correctly capture the kinetic physics of explosive events.
-- such as tail reconnection Onset.
- MMS needs comparison from PIC!

There were successful comparisons between observation and PIC, there will be more in the future!

Computational requirement

$\mathrm{mi} / \mathrm{me}=25$
particle/cell=200
$L x \times L z=5 I .2 d i \times 25.6 d i$
$n \times x n z=1024 \times 512$
wpe/wce=4.0

resource required:
256 CPUs x I hour ~ 256 CPU-hours
Particle data/frame ~ 3 GB
Total fields \& moments data ~ 3 GB

Particle-in-cell Simulations

Lorentz Force

$$
\mathbf{F}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

\checkmark First-principle kinetic description

Feature of VPIC?

Test particle simulations

Since we have saved: B E

- Track particles backward in time will tell you their origins.

One example that studied DF at tail:

The era of MMS

"MMS reveals, for the first time, the small-scale three-dimensional structure and dynamics of the elusively thin and fast-moving electron diffusion region. It does this in both of the key reconnection regions near Earth, where the most energetic events originate."

Find the plane of reconnection in 3D

- The optimized reconnection plane is the plane that maximize reconnection rate .
-- outflow speed (Swisdak \& Drake et al. 2007)
(Cassak \& Shay 2007;
-- tearing growth rate (Liu et al. 2015)

Q : Which plane does reconnection prefer?

- In principle, reconnection is possible in all planes where the in-plane component reverses sign!

Example 2: Electrons heating

(Egedal et al. NATURE Physics 2012)

- Electrostatic potential.
- Acceleration of non-thermal particles.

Step2: We can generate a bunch of particle distributions

Why do we need to find the reconnection plane???

Tools of observers. It is easy to test if reconnection occurs,
-- Generation of normal B
-- Walen test, Alfvenic jet reversal
-- Distributions.
However, to learn more about reconnection, we better know the plane of reconnection.

- Better estimate the energy conversion (Shay, Phan,Yamadaetc), particle energization.
- If you want to know the reconnection rate-Ey- quasi-2D approximation!
-- impossible to integrate along E||.
-- but measures Ey at one point.
- Better compare with PIC simulations.
-- distribution differs at different plane.
-- you want to compare with those in a right plane.
- Local geometry near the diffusion region.
-- local reconstruction.
-One of the topic brought up in GEM workshop, "global vs. local".
-- Local or global physics (global separator) that controls the x-line orientation?
-- local reconstruction of the event + global simulation+ local simulation
- Better understand the effect of shear flows \& diamagnetic drift on reconnection.
-- shear flows \& diamagnetic drift along the L direction could suppress
-- shear flows \& diamagnetic drift along the M direction does not suppress.
- More reasons?

[^0]: Figure: Particle-in-cell distribution function of local region.

