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Flares Y,

* Most pronounced in X-ray or Extreme
Ultraviolet

* Flares occurring on the Earth-facing solar disk
classified by GOES X-ray measurement in the
0.1-0.8 nm (1-8 A)

* Measured by SDO EUV wavelengths

 Farside flares — Can be seen in STEREO EUV
Images
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Penetrates Earth's Y N \

Atmosphere?

Radiation Type Radio Microwave Infrared Visible Ultraviolet  X-ray Gamma ray
Wavelength (m) 107° 0.5x10°° 1078 10710 10712

Approximate Scale
of Wavelength

Buildings Humans  Butterflies Needle Point Protozoans Molecules Atoms  Atomic Nuclei

Frequency (Hz)

10* 108 102 10™° 10'° 108 10%°

Temperature of
objects at which
this radiation is the

most intense
wavelength emitted

)

1K 100 K 10,000 K 10,000,000 K
=272 °C =173 °C 9,727 °C ~10,000,000 °C



Flares

Sun Primer: Why NASA Scientists Observe the Sun in Different Wavelengths
http://www.nasa.gov/mission_pages/sunearth/news/light-wavelengths.html
Different SDO Wavelengths
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» Cause radio blackout through changing
the structures/composition of the
lonosphere (sudden ionospheric
disturbances) — x ray and EUV emissions,
lasting minutes to hours and dayside

 Affect radio comm., GPS, directly by its
radio noises at different wavelengths

» Contribute to SEP — proton radiation,
lasting a couple of days



2012 March 7 X5.4/X1.3 flares L

Most pronounced in x-ray and EUV =

SDO EVE MEGS-SAM - SDO - AlA 193 - Space Weather Product = SDO - AIA 131

-]

Inm imnag

&
=
)
'y
-
Q
[
a

1.

0
=

0100

10—minute integration

SDO/EVE SAM 0.1—=7.0

, Blended
K1 T e AW EUV




1: ionospheric dynamics

X-ray and EUV

The extreme Halloween solar flares are shown to have extreme
ionospheric effects. Enhancements in ionospheric total electron
content of 30% nominal values were noted for the 28 October
2003 event. These changes occurred on timescales of 5 min. The
enhanced ionospheric TEC lasts for hours after the flares.

The 260-340 A ° portion of the flare spectra through photoionization
creates electron-ion pairs at altitudes >160 km, where the
recombination rates are long. The x-ray portion of the flare spectra,
on the other hand, creates ionization at 95-110 km altitude, where
the recaombination timescales are only approximately tens of
seconds.

There is a wide variation in flare spectra from event to event. It was
shown that although the 4 November flare (X28) was almost double
the intensity of the 28 October flare (X17) in 1-8 A ° x-rays. The 28
October flare was more than double the 4 November flare peak
intensity in the 260—-340 A ° EUV wavelength band.

Tsurutani, B. T., et al. (2006 ), Extreme solar EUV flares and ICMEs and resultant extreme ionospheric
effects: Comparison of the Halloween 2003 and the Bastille Day events , Radio Sci. , 41 , RS5S07, doi:
10.1029/2005RS003331.



Type Il Radio Emission 0:‘

STEREOMWAVES Daily Summary - 07-Mar-2012 (DOY 067)
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Solar Flare: radio noise !

SUMMARY: 10cm Radio Burst

Begin Time: 2012 Mar 07 0007 UTC
Maximum Time: 2012 Mar 07 0117 UTC
End Time: 2012 Mar 07 0210 UTC
Duration: 123 minutes

Peak Flux: 7200 sfu

Latest Penticton Noon Flux: 138 sfu

This noise is generally short-lived but can cause
interference for sensitive receivers including radar, GPS,
and satellite communications.




Solar radio bursts affect GPS directly
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This event exceeded 1,000,000 solar flux
unit and was about 10 times larger than
any previously reported event.

N

Frequency (GHz)

1

18 19 20

UT Hours
Cerruti, A. P, P. M. Kintner Jr,, D. E. Gary, A. J. Mannucci, R. F. Meyer, P. Doherty,
and A. J. Coster (2008), Effect of intense December 2006 solar radio bursts on GPS
receivers, Space Weather, 6, S10D07, doi:10.1029/2007SW000375.

1



Coronal Mass Ejection (CME)



@ SWx impacts of CME 5?

« Contribute to SEP (particle radiation): 20-30
minutes from the occurrence of the CME/flare

* Result in a geomagnetic storm: takes 1-2
days arriving at Earth

 Result in electron radiation enhancement in
the near-Earth space (multiple CMES): takes
1-3 days

Affecting spacecraft electronics — surfacing charging/internal charging, single
event upsets

Radio communication, navigation

Power grid, pipelines, and so on

14



@ CME

* Massive burst of solar materials into the
iInterplanetary space: 1075 g
 Kinetic energy 10732 erg

 Yashiro et al. (2006) find that virtually all
X-class flares have accompanying CMEs



CME viewed by coronagraph imagers

Stereo Behind Coronagraph 2 - SOHO - LASCO C2 = Stereo Ahead Coronagraph 2

2012/03/07 00:48

2012-03-07 01:09:15.0 ~ 2012-03-07 00:48:00.0 ~

SOHO - LASCO G3 2 WSA-ENLIL-CONE Modsl CME Evolution - Density [ Inner Planets + 1

2012-03-07 01:09:15.0 ~

Eclipses allow corona to be better viewed
Does not happen often
Modern coronagraph imager is inspired by

that
Occulting disk blocks the bright sun so we

can observe corona features better
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« March 7, 2012 CMEs associated with two
x-class flares

ISWA layout

Associated with an Active Region



5N CME from Filament eruption

A movie

Northeast (upper
left) quadrant
starting around
19:00 UT on Feb
10, 2012

SDO/AIA 304 2012-02-10 00:12:57 UT



@ The associated CME (&

STEREO B SOHO STEREO A

Heart-shaped
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Is one important space weather contributor too!

Particularly for its role in enhancing electron
radiation levels near GEO orbit and for
substantial energy input into the Earth’s
upper atmosphere

May be more hazardous to Earth-orbiting
satellites than CME-related magnetic storm
particles and solar energetic particles (SEP)



CIR and HSS ‘&

Co-rotating Interactive Regions (CIRs) are regions within the solar wind
where streams of material moving at different speeds collide and
interact with each other. The speed of the solar wind varies from less
than 300 km/s (about half a million miles per hour) to over 800 km/s
depending upon the conditions in the corona where the solar wind has
its source. Low speed winds come from the regions above helmet
streamers while high speed winds come from coronal holes.

As the Sun rotates these various streams rotate as well (co-rotation)
and produce a pattern in the solar wind much like that of a rotating lawn
sprinkler. However, if a slow moving stream is followed by a fast moving
stream the faster moving material will catch-up to the slower material
and plow into it. This interaction produces shock waves that can
accelerate particles to very high speeds (energies).



COROTATING FLOW
(INERTIAL FRAME)

oN
Wes 4‘1&55\

AMBIENT
SOLAR WIND

(d,\\“m/ AMBIENT

&> @ SOLAQ<~\D

Figure 6. Schematic illustrating 2-D corotating stream structure in the solar equatorial plane in the
inner heliosphere (from Pizzo, 1978).




Coronal Hole HSS

Mar 1, 2011

June 4, 2012

SDO/AIA 193 2011-03-01 00:14:56 UT
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Predicting impacts of CMEs Modeling and predicting the ambient solar wind
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Current coronal hole 5.;‘

SDO/AIA 193 2014-06-07 13:57:19 UT SDO/AIA 193 2014-06-09 03:15:19 UT

June 7, 2014 June 9, 2014
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In-situ signatures of CME and
CIR HSS at L1

ACE and WIND



Clean HSS
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Schematic of the three-dimensional structure of an ICME and b&
o

upstream shock
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Current storm
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Space Weather Effects and Timeline
(Flare and CME)

iSWA Custom Timeline Cyanet
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Flare effects at Earth:

~ 8 minutes (radio blackout
storms)

Duration: minutes to hours

SEP radiation effects
reaching Earth: 20
minutes — 1hour after
the event onset
Duration: a few days

CME effects arrives @
Earth: 1-2 days (35 hours
here)

Geomagnetic storms: a
couple of days

32



Types of Storms
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CME: could get deflected, bended, but more or less in the radial direction
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Geomagnetic storm

CME impact and SEP (Solar
Energetic Particle) impact are
different

CME impact @ Earth: Geomagnetic
1 Storm

,,,,,,,,, | Radiation storm @ Earth from SEPs

CME speed: 300 — 3500 km/s
SEPs: fraction of ¢
Light speed c: 3 x1075 km/s

RZ N (cm™)

ENUL—-2.7 lowres—2121—a3b1f WSA V2.2 GONG—-2121



SEPs: ion radiation storms

Potentially affect everywhere in the solar system

ourtesy: SVS@ NASA/GSFC



@ Two Main Drivers for the
Magnetosphere

e CME (you have seen plenty of them already)

* CIR (Corotating Interaction Region) High Speed
solar wind Stream (HSS)

Geomagnetic storm
o CME storm (can be
severe) Kp can reach 9
o CIR storm (moderate)
Kp at most 6



CME interaction with Earth (magnetic field)

@ Geomagnetic Storms:

Geomagnetic storms due to CIRs are at most moderate




& SWx in the near-Earth
environment

» Solar wind +magnetosphere interactions
« CIR/HSS and CME impacts on Earth

* Importance of magnetosphere in space
weather

Geomagnetic storm
o CME storm (can be
severe)
o CIR storm (moderate)

40



"The solar wind pushes and stretches Earth’s magnetic field into a vast,
comet-shaped region called the magnetosphere. The magnetosphere and
Earth’s atmosphere protect us from the solar wind and other kinds of solar
and cosmic radiation.

Flares/CME/High-Speed

Earth’s magnetosphere




Q Different impactson RB @,

CME vs CIR storms

e CME geomagnetic storms: RB flux peak inside
geosynchronous orbit. The peak locations
moves inward as storm intensity increases

* CIR geomagnetic storms: More responsible for
the electron radiation level enhancement at
GEO orbit



Click the check boxes to toggle series visibility PN
HSS and radiation belt electron flux enhancement
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lonospheric
Dynamics/Storms



The ionosphere is the densest
plasma between the Earth and
Sun, and is traditionally
believed to be

mainly influenced by forcing
from above (solar radiation,
solar wind/magnetosphere)

lonosphere

Recent scientific results show =~
that the ionosphere
is strongly influenced by forces
acting from below.

Research remains to be done:
How competing influences
from above and below shape
our space environment.
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Courtesy: ICON



ISWA layouts
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layouts

* Monitoring of space weather activities

* Events

 Anomaly

* Comparative study

 Weekly summary and highlights of specifics
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Q Layouts - examples 6";’

o http://1.usa.gov/1rQXhWK - x1.4 flare on April
25, 2014

* http://1.usa.gov/1kr0842 - summary
20140430

* http://1.usa.gov/1i2Qemt scintillation with Kp
* http://1.usa.gov/1gPzEKM scintillation
e http://1.usa.gov/1deGdXC anomaly resolution

* http://1.usa.gov/1fk5Fv6 coronal hole
responsible for Saturn aurora




http://1.usa.gov/1e5ZBDW - march 7, 2012 event

http://1.usa.gov/LSfnaC - evolution of March 2013
coronal hole in SDO, STA and STB

nttp://1.usa.gov/11ZjWeD - SDO view of the coronal
nole when it arrived at ACE

nttp://1.usa.gov/1c51alC - layout of the 2013-09-29
CME and its impacts

http://1.usa.gov/HUue2U - summary 20131113
http://1.usa.gov/172TYTB - 20131107 CME highlight




