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Abstract16

The Space Weather Forecast Testbed (SWFT) is developed by a team of space weather17

scientists and mathematicians at the University of Southern California (USC) and Jet18

Propulsion Laboratory (JPL) to foster the creation of models for space weather forecast19

by exploration of existing historic data using techniques of machine-learning. As an ex-20

ample to demonstrate the potential power of SWFT, we present in this paper a multi-21

linear regression based forecast model for solar wind. Solar wind is one of the key drivers22

for numerous physics-based models for space weather including thermosphere and iono-23

sphere models. Many attempts have been made to produce forecasts for the solar wind.24

SWFT provides an unified framework for forecast model formulation, training and per-25

formance assessment. In particular, the preparation of training and validation data by26

SWFT takes into account of realistic constraints on data latency and forecast lead time.27

In developing a solar wind forecast model, SWFT allows fast exploration of many meta-28

parameters such as the list of predictive variables and their time history used in construct-29

ing a model. We present the impact of meta-parameter selection, as well as, performance30

relative to existing solar wind forecast models.31

1 Introduction32

The wide reliance on wireless communication systems such as the Global Position-33

ing System (GPS), in every aspect of social-economic life and for national security, has34

highlighted the need for an ability to forecast significant disturbances in the Earth’s ther-35

mosphere and ionosphere. For the last two decades, significant progress has been made36

in developing ionosphere data assimilation systems (R. Schunk et al., 2004), (Wang et37

al., 2004). These systems leverage an abundance of remote sensing data consisting of slant38

path total electron contents (STEC) to produce an accurate estimation of the current39

distribution of electrons and ions in ionosphere, i.e., electron density profile (EDP). As40

in most troposphere numerical weather prediction models, the forecast for future con-41

ditions is produced by numerically integrating in time the physics-principle based dy-42

namic model. However, unlike the troposphere, plasma systems in the ionosphere are strongly43

driven by external driving forces such as solar irradiation fluctuation, perturbation of44

magnetic and electric fields and, in polar regions, energetic particle precipitation. As a45

result, the current ionosphere models can only produce reliable short-term forecasts of46

up to 3 hours lead time. On the other hand, for many practical applications, a medium47

range forecast with one to three day lead time predicting substantial disruptions in ther-48

mosphere and ionosphere is needed. Therefore, while current data assimilation technique49

represents a milestone in space weather forecast, complementary approaches must be ex-50

plored to achieve medium range forecast in space weather. At least from a theoretical51

perspective, the medium range forecast goal could be achieved by stringing together mod-52

els from the surface of sun, through the interplanetary medium to the Earth’s thermo-53

sphere and ionosphere. This is indeed what our team proposed to do as a part of NASA54

and NSF’s Living-with-a-star (LWS) program (Mannucci et al., 2015). Although we have55

achieved some success in identifying sensitivity of thermosphere and ionosphere features56

to solar-wind in episodic events (Meng et al., 2016), it is also evident that many mod-57

els for space weather have not been sufficiently calibrated to produce satisfactory pre-58

dictions. Furthermore, it is also apparent that the lack of longitudinal persistent inves-59

tigations of ionospheric variability under a wide array of solar and interplanetary con-60

ditions makes it difficult for us to precisely characterize ionosphere anomalies in general61

and those attributable to solar events such as large coronal mass ejections (CMEs) in62

particular. This realization has prompted us to examine historical data for guidance (Wang63

et al., 2016). The development of metrics such as n-cluster radius for characterizing the64

degree to which the state of the ionosphere deviates from nominal condition can be viewed65

as a form of feature extraction from large dimensional data such as the Global Ionosphere66

Map (GIM) which is produced at the the Jet Propulsion Laboratory operationally since67

the early 1990s. Our focus on space weather data and machine-learning techniques led68
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us to develop the Space Weather Forecast Testbed as a platform to explore the possi-69

bility of forecasting space weather with a combination of data and first principle model70

based approaches. As a demonstration of the utility of SWFT in developing a data based71

empirical forecast model, we present our experience of forecasting solar wind speed Vx72

in this paper.73

It is well-known that solar events such as coronal-mass-ejections, high-speed solar74

wind streams and interplanetary magnetic storms can have significant impact on Earth.75

In particular, the ionosphere conditions critically depend on the variation of solar irra-76

diation, solar wind and variations in the interplanetary magnetic field. A multitude of77

empirical (Bilitza & Reinisch, 2008),(Y. Chiu, 1975) and first principle based models have78

been developed (Ridley et al., 2006), (Qian et al., 2014), (R. W. Schunk, 1988),(Huba79

et al., 2002), (Wang et al., 2004). All these models rely on the availability of key driver80

parameters such as F10.7, solar wind speed, Kp or Ap index that characterize the space81

environment. It is common knowledge that the ability to generate medium range fore-82

cast for ionosphere conditions critically depends on our ability to forecast the driver pa-83

rameters. In the case of forecasting solar-wind speed, significant research efforts have been84

reported (Owens et al., 2008), (Owens et al., 2017),(Rotter et al., 2012), (Robbins et al.,85

2006),(Wintoft et al., 2017),(Vršnak et al., 2007),(Jian et al., 2016),(M. S. Lang et al.,86

2017), (Henley & Pope, 2017). The earlier efforts were mostly based on a combination87

of empirical or physics based models (Owens et al., 2008). More recently, data assim-88

ilation models have been applied to physics-based space weather models (Henley & Pope,89

2017),(Owens et al., 2017),(M. S. Lang et al., 2017). Machine-learning based techniques90

are also used to classify solar events (Camporeale et al., 2017). Performance of solar-wind91

forecast models have also been compared (Owens et al., 2008),(Jian et al., 2016). The92

focus of our study is on the use of tools in SWFT to explore a large set of possible meta-93

parameters for developing a data-driven model for solar wind forecast. The use of re-94

gression analysis technique is one of possible machine-learning techniques that can be95

helpful in training forecast models.96

An outline of the manuscript is as follows. In Section 2, we present the general frame-97

work and basic vocabulary for a statistical inference model and their adaptation for a98

forecast model. We also present the basic components and capability of the SWFT to99

help its users to explore the space of meta-parameters for developing a forecast model.100

In Section 3, we present our approach in selecting covariate variables for forecasting Vx.101

In Section 4, we present comparison of performance of 11 models we constructed. Finally,102

in Section 5, we present the future directions for SWFT development in general and pos-103

sible improvement in data driven solar-wind forecast models.104

2 Space Weather Forecast Testbed (SWFT)105

In this section, we first define a basic statistical framework for machine-learning106

and its use in the context of developing a forecast model to clarify terminologies that we107

shall use throughout this manuscript. Then in subsection 2.2, we shall provide an overview108

of the current state of the SWFT. Finally, in subsection 2.3, we shall present our vision109

of SWFT as a community tool for space weather forecast research.110

2.1 Statistical Framework for Machine-Learning and Forecast111

In the general terminology of statistics, an inference model for a quantity Y from
the values of variables Xk, k = 1, · · · ,m is a function F that maps Xk to Y . The vari-
able Y is referred to as the dependent variable and the variables Xk, k = 1, · · · ,m, are
called either covariates, independent, or explanation variables. The process of formulat-
ing and calibrating an inference model using dataset

DT = (Y i, Xi
1, · · · , Xi

m), i = 1, · · · , NT
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consists of selecting F from a class F of functions that shows the greatest agreement with
available training-data, or equivalently, least discrepancy between Y i and F (Xi

1, · · · , Xi
m).

This process is generally referred to as regression analysis. The quality of function F with
respect to training-data is often measured by

NT∑
i=1

L(Y i − F (Xi
1, · · · , Xi

m)), (1)

where L is sometimes called a penalty or loss function. In a general statistical framework,112

the variables Y and Xk, k = 1, · · · ,m are assumed to be random variables following113

a joint probability distribution pY,X1,··· ,Xm and the training dataset DT consists of a set114

of random samples of size NT where each member (Y i, Xi
1, · · · , Xi

m) of the set is sam-115

pled independently of other members and follows the distribution pY,X1,··· ,Xm
.116

As a result, the optimal selection F which minimizes (1) is itself a random func-
tion dependent on DT . Moreover, a prediction F (X1, · · · , Xm) for a given X1, · · · , Xm

is also a random variable that depends on the training data set DT . The ultimate goal
of developing a predictive model is to find F that gives value F (X1, · · · , Xm) close to
Y in a statistical sense. For example, we may wish that the expected value of the pre-
diction error

EDT ,(Y,X1,··· ,Xm)(Y − F (X1, · · · , Xm))

is zero. We need to be reminded that in this notation, the expected value is taken over117

all possible datasets DT and (Y,X1, · · · , Xm).118

Definition 1. (Unbiased predictor) The process of obtaining the predictor F119

from a dataset DT is unbiased if the above expected value is equal to zero.120

In fact, for any specific realization of dataset DT and therefore a specific realiza-121

tion F of the inference model, we cannot usually establish full statistical properties of122

Y−F (X1, · · · , Xm) without knowing the joint probability distribution pY,X1,··· ,Xm
. In123

practice, after the actual value for Y a is measured, the difference Y a−F (Xa
1 , · · · , Xa

m)124

can be determined. This difference should be considered as one realization of the ran-125

dom quantity Y − F (X1, · · · , Xm).126

Definition 2. (Prediction Error) The difference Y a−F (Xa
1 , · · · , Xa

m) is called127

the prediction error for predictor F evaluated on data point (Xa
1 , · · · , Xa

m, Y
a).128

As in all statistical studies, the distribution of prediction error can be assessed with129

a new set of data DV = (Ŷ j , X̂i
1, · · · , X̂j

m), j = 1, · · · , NV , which is not used for train-130

ing F , by examining the differences Ŷ j−F (X̂j , · · · , X̂j
m). The dataset DV is referred131

to as the validation dataset.132

Definition 3. (Machine Learning Algorithm) We call a machine learning al-133

gorithm an algorithm that constructs an inference model F using a dataset DT .134

A typical machine learning application involves not only selection of an algorithm135

for constructing F , but more critically selection of the appropriate forecast variable Y136

and covariates X1, · · · , Xm, preparation of the training dataset DT , and validation dataset137

DV . Indeed, for almost all machine-learning applications, these latter tasks are often the138

most time-consuming ones.139

When the above general framework of statistical inference is applied to forecast-140

ing the dynamical environment of space weather, a much broader set of questions are141

often asked. These include:142

a. What are physical quantities in space weather that can be reliably predicted and143

for which their prediction is valuable either for specific applications or for increas-144

ing our understanding of underlying physics?145
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b. How long a lead time for a forecast is feasible and valuable?146

c. What are currently measured physical quantities that are the most promising co-147

variates to use in the development of a forecast model for the variables identified148

in a.?149

d. What are impacts of latency of the covariate physical quantities?150

e. Should only the latest available measurement of the covariates physical quanti-151

ties be used in a forecast model or should older measurements also be used?152

2.2 Current Status of Space Weather Forecast Testbed (SWFT)153

One major goal of the SWFT is to provide an easily accessible platform for users154

to address the above questions and to explore forecasting strategies for space weather.155

We are particularly interested in the developments of models that can help to forecast156

anomalies in the Earth’s ionosphere using measurements of solar wind, interplanetary157

magnetic field (IMF) and other relevant space weather parameters. The three key com-158

ponents of SWFT are159

• An extensive database of historical measurements that are quality controlled and160

registered on a common temporal grid;161

• Basic utilities for selecting and assembling data needed for forecast experiments.162

• A collection of useful machine learning algorithms and associated analysis tools163

that can be readily applied to the database of historical measurements.164

The current version of SWFT contains 12 years of space weather related data. The165

data can be divided into three broad groups.166

1. Space and Earth based measurements of solar, IMF and geomagnetic activities;167

2. Key ionosphere characteristics derived from the Global Ionospheric Map (GIM)168

which have been produced by the Jet Propulsion Laboratory every 15 minutes for169

the past 2 decades.170

3. A collection of categorical flags derived from data in groups 1 and 2 indicating anoma-171

lies and extreme events. In many cases, these flags indicate whether or not a given172

threshold for the corresponding variable in group 1 or 2 is exceeded. For an ex-173

ample, one of the variables in this group indicates whether or not global maximum174

VTEC is in the top 5% of historically recorded maximal VTEC value.175

The initial selection for the content of the SWFT database aims to provide suffi-176

cient and commonly used datasets to enable the experimentation with machine-learning177

algorithms for space weather forecasting. Our data selection is far from exhaustive and178

involves many practical trade-offs. In order to allow quick adoption of the most success-179

ful and accessible machine-learning algorithms we limit our selection of data to sources180

where comparable, uniform quality and spatial coverage of data is available over an ex-181

tensive period of time. This consideration unfortunately makes it impossible to include182

some of the most common ionosphere measurements such as F2-region peak electron den-183

sity, NmF2 and its height, HmF2 derived from ionosondes. The inclusion of the third184

group of variables is motivated by the fact that many machine-learning algorithms are185

highly effective at producing categorical forecasts (Mitchell, 1997). In fact, it is quite in-186

tuitive that in the absence of sufficiently accurate and detailed measurements of relevant187

space weather parameters, it may only be possible to produce categorical predictions such188

as most likely all-clear or increased chance of anomaly conditions. A complete list of the189

dataset in the current version of SWFT is given in Tables 1 and 2.190

From its conception, we viewed SWFT as useful for developing forecasting mod-191

els following the paradigm of forecast experiment. In such an experiment, we imagine that192

we are at a specific time in the past we refer to as the current epoch. Our objective is193
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Table 1. Datasets in current version of SWFT. For data with higher time resolution than 3

hour, statistics of values in each 3 hour time intervals are provided. These are referred as local

statistics.

Name Source Original Resolution Local Statistics

Kp NGDC,NOAA 3 Hrs
Ap NGDC,NOAA 3 Hrs
Cp NGDC,NOAA 3 Hrs
SunSpot SEC, NOAA 3 Hrs
F107 SEC, NOAA 3 Hrs
Dst WDCG, Kyoto 1 Hrs median,min,max,var
Bx OmniWeb/GSFC, NASA 5 Min median,min,max,var
By OmniWeb/GSFC, NASA 5 Min median,min,max,var
Bz OmniWeb/GSFC, NASA 5 Min median,min,max,var
Solar-wind speed Vx OmniWeb/GSFC, NASA 5 Min median,min,max,var
Solar-wind speed Vy OmniWeb/GSFC, NASA 5 Min median,min,max,var
Solar-wind speed Vz OmniWeb/GSFC, NASA 5 Min median,min,max,var
Proton density OmniWeb/GSFC, NASA 5 Min median,min,max,var
Temperature OmniWeb/GSFC, NASA 5 Min median,min,max,var
Flow pressure OmniWeb/GSFC, NASA 5 Min median,min,max,var
Ae OmniWeb/GSFC, NASA 5 Min median,min,max,var
Al OmniWeb/GSFC, NASA 5 Min median,min,max,var
Au OmniWeb/GSFC, NASA 5 Min median,min,max,var
Pcn OmniWeb/GSFC, NASA 5 Min median,min,max,var

to train a forecast model for a specific environmental variable of interest with a given194

lead time, using data available prior to the current epoch. For example, if we want to195

forecast the solar-wind component Vx one day ahead and we select a current epoch of196

May 1st, 2011, the possible training data for the forecast model are all data available prior197

to May 1st, 2011. Suppose that the measurement of Vx is only available one-day after198

it is measured, that is Vx data has 1-day latency, then the most recent available data is199

from April 30, 2011. The situation can be further complicated by the availability of co-200

variate data. For example, if we also decide that we need to use the AL index as a co-201

variate and it also has a latency of one days, then the first available training data pair202

((Vx, AL)) consists of Vx measurement for April 30, 2011 and AL index for April 28. This203

is because that to forecast one-day ahead for the value of Vx in April 30, 2011, the only204

data we can use are those available on April 29. The latest AL value available on this205

day is for April 28. A diagram illustrating the chronological relationship between train-206

ing and validation data for a forecast experiment is shown in Figure 1.207

The design of SWFT is to provide maximum flexibility in exploring strategies for208

space weather forecast. Traditionally an empirical model such as IRI-2012, MSIS or GPS209

IONO Model for F10.7 (Bilitza & Reinisch, 2007), (Picone et al., 2002),(Klobuchar, 1987)210

is a parametric model with a limited set of parameters defining the season, geographic211

location and general space environmental conditions defined by values such as F10.7 and212

Ap index. These models are typically trained with extensive historical data covering a213

wide range of conditions spanning multiple solar cycles. A counterpart for the empir-214

ical models is a data assimilation model. Typically, at each step, a data assimilation model215

recursively uses the most recent observation data to optimally initialize a physical law216

based model. A forecast is produced by propagating the initial state of the model in time.217

We envision models developed in SWFT can potentially be a hybrid between a paramet-218
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Figure 1. Scope of data usage for a forecast experiment in SWFT. The green triangle at bot-

tom marks the current epoch. The blue triangle on the bottom indicates the first desired forecast

value. The time interval between these two triangles corresponds to the forecast lead period. The

black triangle on bottom represents the time stamp of the most recently available observational

data. The time interval between this data point and current epoch corresponds to data latency.

To train a regression model using historical data, the most recent observation for the forecast

variable is therefore marked by the third red triangle from right. The total amount of training

data for the forecast variable is represented by the middle blue bar. The needed data for the

covariate variables must be shifted by the forecast lead time and data latency. The total amount

of historical covariate data needed for model training is represented by the bottom blue bar. For

an assumed current epoch, the data can be used for validation follows a similar logic. The most

recent data for the forecast variable is the same as the first desired forecast. Therefore, the total

amount of validation data, represented by the top green bar starts at the same point marked

by the right most red triangle on the bottom. The total amount of covariate variables needed

to generate the validation values for the forecast variable is represented by the green bar in the

middle.
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Table 2. Datasets represening ionospheric conditions in the current version of SWFT are

mostly derived from the Global Ionospheric Map (GIM) continuously produced by JPL since

mid-1990s. The two types of datasets are included. Ionosphere signatures such as global or high-

latitude region maximum VTEC or characteristics of equatorial region. The second category

consists of cluster radius which measures unusualness of a GIM relative to other GIMs using

specific metrics (Wang et al., 2016). Since GIMs are produced every 15 minutes, only the local

statistics of data are included in SWFT.

Ionosphere Signatures

Name Region Signature Local Statistics

MaxVTECGlobal Global Maximal VTEC median,min,max,var
MaxVTECHiLatNorth High latitude North Maximal VTEC median,min,max,var
MaxVTECHiLatSouth High latitude South Maximal VTEC median,min,max,var
GapML Equatorial Mean gap width median,min,max,var
GapMedian Equatorial Median gap width median,min,max,var
Asym Equatorial VTEC asymmetry median,min,max,var

GIM Cluster Radius

Name Region Metric Local Statistics

GIM L1 HiLat High latitude L1 median,min,max,var
GIM L1-LocalTime Local time L1 median,min,max,var
GIM L1-MetricComponents Global L1 median,min,max,var
GIM L1-Relative Global L1-Relative difference median,min,max,var
GIM L1-dLat Global L1-Latitude gradient median,min,max,var
GIM L1-dLat LocalTime Local Time L1-Latitude gradient median,min,max,var
GIM L∞-HiLat High latitude L∞ median,min,max,var
GIM L∞-LocalTime Local time L∞ median,min,max,var
GIM L∞-MetricComponents Globale L∞ median,min,max,var
GIM L∞-Relative Globale L∞-Relative difference median,min,max,var
GIM L∞-dLat Global L∞-Latitude gradient median,min,max,var
GIM L∞-dLat LocalTime Local time L∞-Latitude gradient median,min,max,var

ric empirical model and an assimilation model in the sense that these models rely on re-219

cently available data to capture the near-term trend in the relationship between fore-220

cast variable and its covariates and, use the detected trend to propagate the state in time.221

2.3 SWFT as a Community Tool222

The ultimate success of SWFT requires acceptance and participation by the com-223

munity. SWFT currently consists of openly accessible Matlab source code that reads from224

a custom multi-year data file formatted as Matlab native binary. The SWFT source code225

is planned for open access using tools that allow wide dissemination and collaborative226

development. Matlab statistical and machine learning algorithms are currently the ba-227

sis for SWFT calculations. It would be relatively straightforward to add additional func-228

tionality to SWFT by implementing additional algorithms from the various Matlab tool-229

boxes.230

We envision that contributions to SWFT are possible by space weather scientists,231

as well as, scientists from other disciplines. We feel that such contributions will be greatly232
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beneficial to both the contributors and the broader community. On the one hand, the233

contributors of data and algorithms to SWFT will gain wider exposure for their work234

by allowing a wide cross-section of the community to explore a broad range of uses for235

their data and techniques. On the other hand, scientists and researchers who are not nec-236

essarily knowledgeable in all aspects of space science have the opportunity to explore a237

large variety of forecast strategies. In fact, the research reported in this paper is an il-238

lustration of the potential for using SWFT as a platform for community-wide collabo-239

ration: specialized knowledge in measuring and modeling of the solar wind is not required240

to conduct the experiments, even though solar-wind is one of the key drivers for first prin-241

ciple based ionosphere models such as GITM (Ridley et al., 2006) which we use in our242

research on ionospheric disturbances.243

The data sets that may contribute usefully to SWFT are subject to a set of spe-244

cific requirements. Such data must be defined on a common time grid with 3 hour res-245

olution. We recognize that inevitable gaps exist in most of dataset and different machine-246

learning algorithms are designed to handle the issues of missing or imperfect data. A value247

of NaN is used to indicate missing data in the SWFT database. However, most current248

algorithms in SWFT do not address general data wrangling. Data wrangling, which refers249

to quality control of data and methods for recovering missing data, is widely acknowl-250

edged as necessary for machine learning algorithms (McGranaghan et al., 2018). Data251

wrangling can be implemented in future versions of SWFT. However, in general the datasets252

in SWFT are quality-controlled and have been pre-screened prior to inclusion into SWFT.253

Following the general statistical framework for machine-learning, data points in SWFT254

are assumed to be independent identically distributed samples of an underlying random255

physical process in some broad sense. As a result, the existing SWFT algorithms should256

not be directly applied to spatio-temporal data sets such as AMPERE, SuperDARN or257

satellite data that are acquired at varying locations and times. To bring such data into258

SWFT requires that the spatio-temporal data are reduced to a time series of physically259

meaningful quantities. For example, SuperDARN high latitude convection maps have260

been used to derive the cross polar cap potential (CPCP) or quantity of open magnetic261

flux at high latitudes (Liu et al., 2019),(Sotirelis et al., 2017). CPCP and magnetic flux262

are time series that can be used by SWFT. AMPERE field-aligned current maps have263

been used to derive time series parameters such as hemispheric power and polar cap po-264

tential (R. M. Robinson et al., 2018), (R. Robinson et al., 2019). SWFT has applied sim-265

ilar approaches to the spatio-temporal GIM by performing spatial feature extraction (Ta-266

ble 2). Indeed we recognize the challenge in producing time series of space weather data267

conducive for machine-learning and the development of forecast model. While SWFT268

only gives a guideline for the form of final dataset to be integrated into its database, the269

value that the platform SWFT provides to data contributors is that these carefully con-270

structed time series data can be widely used. The sharing of these time series not only271

greatly reduces redundant research efforts, it also allows detection of possible artifacts272

due to differences in data preparation methods.273

Another challenge for SWFT users is that data quality may vary over time. For274

example, the reduction of spatio-temporal data to a single time series may depend on275

the orbit history of a satellite providing the data, or the number of ground stations used276

to create maps of a geophysical quantity. Users of SWFT must be aware that the results277

of forecast experiments will depend to some degree on data quality. There are currently278

no algorithms in SWFT to automatically characterize the degree to which degraded data279

quality may affect forecasts. With SWFT, it is straightforward to conduct the same ex-280

periment over different epochs, e.g. during solar minimum versus solar maximum. If fore-281

cast accuracy varies between these two epochs, SWFT cannot distinguish whether this282

is due intrinsically to sun-Earth connection physics, or to data quality. Users of SWFT283

must characterize their data quality independently of SWFT and use that information284

in the design of forecast experiments.285
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In the Section 3, we shall illustrate the approach of developing a forecast model us-286

ing SWFT by attempting to forecast Vx with at least one-day lead time.287

3 A Solar-wind Forecast Model288

Solar wind velocity with its 3 components Vx, Vy and Vz is measured by the Solar289

Wind Electron Proton Alpha Monitor (SWEPAM) on the ACE spacecraft since 1998 (Mccomas290

et al., 1998),(M. C. Chiu et al., 1998). Extensive research has shown that solar wind mea-291

surements at the L1 Lagrangian point contain key information on the eventual impact292

of CMEs at Earth. As a result, solar wind velocity is a key input to several thermosphere293

and ionosphere models (Ridley et al., 2006),(Meng et al., 2016). Numerous studies have294

shown that solar wind velocity is an important variable to consider when significant iono-295

spheric perturbations occur in the ionosphere. The ability to forecast solar wind veloc-296

ity is considered a promising step toward developing a medium range forecast for anoma-297

lies in the ionosphere.298

There have been many research efforts in developing predictive models for solar wind299

velocity (see (Owens et al., 2008)). Many of these efforts involve physics based model-300

ing of the solar corona and the heliosphere. There are also efforts in making use of the301

empirical relationship between coronal imagery characteristics and solar wind velocity302

(Robbins et al., 2006). More recently, data assimilation models combining physics based303

coronal model with ensemble Kalman filter techniques have been explored (M. S. Lang304

et al., 2017), (M. Lang & Owens, 2019). Machine-learning techniques have also been used305

in classification of noteworthy solar-wind anomalies (Camporeale et al., 2017).306

In this paper, we develop a statistical regression based solar-wind forecast model307

using SWFT. A machine-learning approach can complement first principles approaches308

and establish a useful performance benchmark for forecasting models. The purpose of309

this benchmark goes beyond the practical need for ranking the relative performance of310

these models; it can also serve as an indirect measure of our understanding of the physics311

underlying changes in the solar-wind. Indeed, it is our expectation that improved un-312

derstanding of physics involved should be confirmed by enhancement in the accuracy of313

forecast models.314

In developing our forecast strategy, we select several key parameters guided by util-315

itarian reasons. We explore forecasts with a one-day lead time and we assume there ex-316

ists a one-day latency for the latest covariate measurements. We have arbitrarily selected317

the current epoch for our experiments to be May 1st, 2011. However, since the model318

training process is quite efficient, we expect that in practical use, the approach we de-319

veloped can be used to re-calibrate the model by training it with data from other epochs,320

including recent data that is most relevant to forecasting in the present epoch. There-321

fore, the most relevant parameters in the design of our experiments are the number of322

days ntraining of data we use to train the regression model and the number of days nvalidation323

we use to validate. For all experiments presented in this paper, we took ntraining = 365324

and nvalidation = 30. These parameters are often referred to, in the terminology of machine-325

learning, as parts of meta-parameters for the models. Although the values of these pa-326

rameters can seem to be selected arbitrarily, they could have profound effects on the re-327

sults of experiments. One of the key features of SWFT is to allow users to change the328

values of these meta-parameters easily so that a large number of possible model devel-329

opment options can be explored.330

In our case study of solar-wind forecast, we shall focus our attention primarily on331

another set of key meta-parameters which are the selection of covariates. Traditionally,332

the selection of covariates used in an empirical forecast model is mostly guided by our333

understanding of the physics involved that connects the covariates to the forecast vari-334

able. Of course physical principles are ultimately developed from observed correlations335
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between these quantities. In the machine-learning community, the selection of covari-336

ates has great similarity to the feature selection process in which a lower dimensional337

projection of raw data is first identified and used in subsequent learning. Indeed, we con-338

sider all available data as possible covariates. However, identification of the most rele-339

vant features to the task of forecasting not only reduces the dimensionality of the model340

training problem, it also has the effect to make the resulting models more robust to noise341

in data. In fact, randomized feature selection in which features or covariates are randomly342

picked has also shown to be critical for algorithms such as random regression tree to achieve343

asymptotic consistency. That is, under the assumption that historical data represent in-344

dependent and identically distributed samples of the underlying statistical process, when345

the amount of data used to train a model tends toward infinity, the resulting inference346

model converges to the ”truth”. Since the basic assumption for studying statistical con-347

sistency is that the training data sample are independent and identically distributed fol-348

lowing the same underlying probabilistic distribution as future data, this assumption can349

be hard to verify in practical situations. In our case study of solar-wind forecast, we use350

a feature selection approach based on correlations among the variables.351

As indicated in the previous section, the number of possible sets of covariates for352

Vx forecast is extremely large. In our study, we exclude all variables in the SWFT database353

derived from GIM since our intend is to use forecast of solar-wind to drive ionosphere354

forecast models. Even excluding the GIM derived variable, there are 61 variables in SWFT.355

If only the most recent values for these variables are used, there are as many as 261 pos-356

sible sets of covariates. Moreover, we could also consider recent history of these variables357

as possible covariates for our inference model, we could consider all 24 possible values358

measured during the 3 most recent days (eight values per day) where data are available359

as possible covariates. This would increase of total number of possible sets of covariates360

to 261×24. Identifying a promising set of covariates among the large number of possibil-361

ities requires an efficient feature selection approach.362

The approach we follow in our experiment consists of the following 3 steps.363

1. Identify the leading most contemporary pairwise correlated variables in the SWFT364

database.365

2. For each leading variable identified above, perform autocorrelation analysis to de-366

termine the length of “memory” in these variables.367

3. Perform regression analysis and pruning of the least significant and reliable vari-368

ables from the list of covariates.369

For the first step, we consider each variable in the SWFT database and evaluate
the sample cross-correlation coefficient of each variable with Vx. More precisely, we eval-
uate the quantity ci,Vx defined for variable Xi by

ci,VX
=

1

σXiσVx

n∑
k=1

(Xk
i − X̄k

i )(V k
x − V̄ k

x ), (2)

where Xk
i and V k

x are measurements for Xi and Vx at time k and σXi
, σVx

, X̄i, V̄x are370

the n-sample standard deviation and sample mean for Xk
i and V k

i with k = 1, · · · , n.371

The cross-correlation coefficients take on values between -1 and 1 and its absolute value372

represents the strength of correlation between the two variables. Equation (2) is an es-373

timator of the cross-correlation between two random quantities using a size n sample.374

Therefore, sample cross-correlation is actually a random quantity dependent on the sam-375

ples Xk
i and V k

x . When the number of samples n is small, it is not unusual for two sets376

of randomly selected values to give non-zero sample cross-correlation coefficient. To de-377

termine the confidence we have in the estimator ci,VX
, we calculate the p-value for the378

estimator. The p-value corresponds to the probability that the sample cross-correlation379

coefficient takes an absolute value larger than what we obtained from our current sam-380

ple if in reality the cross correlation between the two variables Xi and Vx is equal to zero.381
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A not very efficient but intuitive way of estimating the p-value consists of constructing382

random shuffles of samples Xk
i , V

j(k)
x where j(k) is randomly selected among the avail-383

able values. Each shuffled set of data allows us to calculate a new value for ci,VX
. By re-384

peating the shuffling process a large number of times, we can empirically construct a dis-385

tribution for the value of ci,VX
when the values of Xi are truly uncorrelated to the ran-386

domly picked values of Vx. When the variables Xi and Vx are not correlated, the sam-387

ple cross-correlation coefficient we obtained with the unshuffled original dataset should388

be similar to the values of ci,VX
obtained from the shuffled datasets. That is, the por-389

tion of shuffled datasets that gives values of ci,VX
larger in absolute value than that ob-390

tained with the original dataset is not very small. This implies a large p-value. On the391

other hand, if the two variables are strongly correlated, the sample cross-correlation co-392

efficients derived from the shuffled datasets would be much smaller in absolute value rel-393

ative to that obtained with original data. This gives a very small p-value. By limiting394

our evaluation to pairwise cross-correlation between Vx and Xi measured at the same395

time instance, we greatly reduce the amount of calculation. However, this approach also396

has significant shortcomings in identifying the most promising covariates for construct-397

ing a forecast model for Vx. First, if our objective is to forecast the value of Vx in the398

future, the future values of covariate variables are also not available at the present time.399

A more complex issue is that we are interested in finding the most effective set of covari-400

ates for the development of the forecast model. Usually, the ensemble of most correlated401

variables to Vx is not guaranteed to be the most effective set of covariates. As a result,402

we use this first step as a screening process to find the most promising candidate for the403

set of covariates.404

Using 365 days of data collected prior to the assumed current epoch of May 1st,405

2011, we computed pair-wise sample cross-correlation coefficients and their p-values which406

were determined using Fisher’s distribution method instead of random shuffling for all407

60 variables in SWFT not derived from GIM. The variables with largest cross-correlation408

coefficients and their p-values are shown in Figure 2.409

Most of these leading variables are expected from our understanding of physics in-410

volved. In particular, variables such as Vz, Bx, Bz are measured by instruments on the411

ACE spacecraft. It is interesting to note that the Dst index is among the most corre-412

lated variables to Vx. Since it is well-known Dst represents the disturbance of geomag-413

netic field which is strongly affected by solar activities, it is expected that Dst is strongly414

correlated to Vx. However, we may suspect that Dst might not be an effective covari-415

ate for a forecast model for Vx because it is a downstream covariate, i.e., variation in Dst416

is a consequence of changes in VX . Although in the training of forecast models, we strictly417

follow the basic rule of only using data available prior to the assumed current epoch, we418

relaxed this rule in the selection of meta-parameter values. In addition to examining the419

p-values of the leading cross-correlated variables shown in Figure 2, we would like to find420

out from historical data in SWFT how persistent is the cross-correlation between Vx and421

other variables. To answer this question, we identified the 14 leading variables most cor-422

related to Vx using each of 12 years of data in the SWFT. Figure 3 shows that at least423

8 variables (represented by whiskers with a circle in the middle) have been among the424

most correlated variables to Vx in every year. These findings give us high confidence these425

variables should be our first selection as covariates for a forecast model for Vx.426

Another important property of a successful set of covariates for a forecast model
is that future values are correlated with values in the past. The auto-correlative prop-
erty of these variables is an indication of the inherent dynamics in the underlying phys-
ical system. Analyzing the length of time the covariates are correlated provides us with
tentative selection of the time sample beyond the latest available to use as covariates in
a forecast model. Indeed for each candidate variables identified by the contemporary cross-
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Figure 2. Variables in SWFT with largest cross-correlation coefficient (red-dots) and their

p-values (blue-dots) to Vx based on data from April 30, 2010 to May 1st 2011
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Figure 3. Persistent leading correlated variables in SWFT. The whiskers indicate the range of

the cross-correlation coefficients (top) or p-values (bottom) for the variables over 12 years and the

squares or circles indicate the median values. The numbers on top of the whiskers and the color

indicate the number of years a given variable has been among the most correlated variables.
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Figure 4. Auto-regression coefficients and their p-values.

correlation analysis, we construct an autoregressive model of the form

Xk
i =

m∑
j=1

ajX
k−j
i . (3)

The coefficients a1, · · · , am are selected so that the following functional is minimized

J(a1, · · · , am) =

N∑
k=1

|Xk
i −

m∑
j=1

ajX
k−j
i |2. (4)

Since the optimal values for a1, · · · , am are functions of sample Xk
i used in the estima-427

tion of regression model (3), these values should also be considered as random variables.428

We can also define the p-values for these variables which represent the probability of ob-429

taining auto-regression coefficients at least as large as we obtain from the training data430

assuming the data are actually uncorrelated. In Figure 4, the auto-regression coefficients431

for some of variables identified through contemporary cross-correlation analysis is shown.432

It is interesting to note that as the absolute values of the auto-regression coefficients433

decrease rapidly in time, their p-values also increase. This is consistent with our under-434

standing that most of space weather variables represent aspects of a highly chaotic sys-435

tem. The significant auto-correlations fade rapidly. The results in Figure 4 show that436

the most meaningful correlation are the among the 16 most recent samples. In all fore-437

cast models we only use the latest 2 days of measurements of covariates and Vx.438

Once we have identified promising candidate variables in the SWFT database through439

contemporary cross-correlation analysis and we have established time limits for past val-440

ues of these covariates to use in a forecast model, we have obtained a tentative list of at-441

tributes as input of a prediction model. The data preparation utility in SWFT can be442

used to extract the appropriate dataset for training and validation. These datasets are443

collections of pairs of values of Vx at a time k and values of covariate variables Xi at time444

k−j where j is larger than the sum of forecast lead time and data latency. For exam-445

ple, one of the first forecast models we attempted to construct has properties listed in446

Table 3.447

In this first attempt at developing a forecast model for Vx we used the most recent448

available values (time stamp -1) and the value for the previous day (time stamp -8) for449

various local statistics of AL,By,Bz,Dst, proton density and Vz, as well as, the entire450

available two day history of Vx as covariates. This model has therefore 40 covariates. Since451

the number of training data points covers 365 days, the values of Vx from May 1st, 2010452
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Table 3. Attributes of a Vx forecast model Time sample refers to the 3-hour time increment in

SWFT. For example, -8 means a 24-hour latent sample (8x3).

Epoch May 1st, 2011

Forecast Lead 1 Day Data Latency 1 Day

Training Data Length 365 Days Validation Data Length 30 Days

Variable Covariate ID Local Statistics Time Sample

AL 35-36 Max -1, -8
AL 39-40 Median -1, -8
AL 37-38 Min -1, -8
By 5-6 Min -1, -8
Bz 7-8 Min -1, -8
Dst 1-2 Max -1, -8
Dst 3-4 Min -1, -8
Proton density 27-28 Max -1, -8
Proton density 31-32 Median -1,-8
Proton density 29-30 Min -1,-8
Proton density 31-32 Var -1, -8
Vx 9-24 Max -1,...,-16
Vz 25-26 Min -1, -8

to April 30, 2011 are used as the values for the forecast variable Vx in the training dataset.453

Since data in SWFT has 3- hour resolution, the training dataset for our first model has454

2,920 data points. Associated with each value V k
x is a vector of length 40 consisting of455

values of covariates as prepared by utilities in SWFT. The attributes of this vector cor-456

responds to the past values of the covariate variables.457

If we denote the components of the covariate vector by Xi, the multi-linear regres-
sion model has the form

Vx =

40∑
i=1

αiXi + α0. (5)

The multi-linear regression analysis algorithm is used to find coefficients α0, · · · , α40

such that the following function is minimized:

N∑
k=1

|V k
x −

40∑
i=1

αiX
k
i − α0|2. (6)

As we have discussed before, the optimal coefficients α0, · · · , α40 which are obtained458

by solving a least squares minimization problem are functions of the random dataset (V k
x , X

k
1 , · · · , Xk

40)459

for k = 1, · · · , N = 2, 920. Therefore, these coefficients should indeed also be consid-460

ered as random variables. The multi-linear regression analysis algorithm also provides461

estimation for the p-values for these coefficients. More precisely, Table 4 shows results462

given by the multi-linear regression algorithm in the Matlab Machine-Learning Toolbox.463

The performance of this model is depicted in Figure 5. Figure 5 is one of the stan-464

dard performance analysis display generated by SWFT. The top panel of the displays465

shows the comparison between the actual values of Vx (black or blue curves) and the re-466

gression model output (magenta or red curves) as a function of time. The region with467
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Table 4. Results of multi-linear regression analysis. The columns are estimated values for the

coefficients (columns 2,7), standard deviation of the estimated value (columns 3,8), t-statistics of

the estimated value (columns 4,9) and the p-values of the coefficients (columns 5,10). The coef-

ficient α0 corresponds to the constant offset in the regression. The coefficient αi represents the

weight for the ith-covariate variable used in this regression where i is the covariate ID given in

Table 3

Coeff. Estimate SE tStat pValue Coeff. Estimate SE tStat pValue

α0 -67.931 9.81 -6.91 5.7e-12 α21 -0.0006 0.10 -0.00 0.99
α1 -0.9110 0.37 -2.42 0.015 α22 -0.0528 0.10 -0.49 0.62
α2 -0.0888 0.37 -0.23 0.81 α23 0.1065 0.10 1.00 0.31
α3 0.6162 0.37 1.65 0.09 α24 -0.0481 0.06 -0.70 0.47
α4 -0.2310 0.37 -0.61 0.53 α25 0.0738 0.06 1.19 0.23
α5 2.7755 0.43 6.35 2.3e-10 α26 0.0207 0.06 0.33 0.73
α6 1.2965 0.44 2.93 0.003 α27 -0.2141 0.63 -0.33 0.73
α7 5.4892 0.67 8.11 7.2e-16 α28 0.5826 0.66 0.87 0.38
α8 -0.3405 0.67 -0.50 0.61 α29 -0.7256 1.25 -0.57 0.56
α9 0.8186 0.07 11.17 2.5e-28 α30 0.7836 1.26 0.61 0.53
α10 -0.1105 0.10 -1.01 0.31 α31 -2.5924 1.16 -2.23 0.02
α11 -0.0034 0.10 -0.03 0.97 α32 0.0280 1.17 0.02 0.98
α12 -0.0132 0.10 -0.12 0.90 α33 0.0153 0.23 0.06 0.94
α13 0.0387 0.10 0.35 0.72 α34 -0.3107 0.24 -1.27 0.20
α14 -0.0710 0.10 -0.65 0.51 α35 0.0149 0.04 0.30 0.76
α15 -0.0207 0.10 -0.18 0.85 α36 0.0534 0.04 1.10 0.27
α16 0.0065 0.10 0.05 0.95 α37 0.0022 0.01 0.16 0.87
α17 0.0561 0.10 0.51 0.60 α38 0.0209 0.01 1.55 0.12
α18 0.0236 0.10 0.21 0.82 α39 0.0081 0.03 0.23 0.81
α19 0.0079 0.10 0.07 0.94 α40 0.0028 0.03 0.08 0.93
α20 -0.0116 0.10 -0.10 0.91

gray background corresponds to data used to train the regression model. The white back-468

ground region corresponds to data used for validation which consists of 30 × 8 = 240469

data points. This plot shows not only that the model is capable of tracking the large vari-470

ations of Vx over time for the training data, similar quality of prediction can also be achieved471

for the validation data. The two panels at the bottom reaffirm observations of the top472

panel. On the left panel, the scatter plots for the true values (horizontal axis) vs. pre-473

dicted values (vertical axis) of Vx are shown. The blue dots represent the training data474

and the red dots represent the validation data. As for any scatter plot, the diagonal line475

corresponds to perfect agreement between true values and model prediction. We can see476

that the two sets of points (blue and red) have similar distribution with accuracy of pre-477

diction degrading for large negative values of Vx compared with performance for lower478

solar-wind speeds. The advantage of the scatter plots is that they allow us to identify479

performance of the model for specific ranges of values of the forecast variable. On the480

other hand, a more summary characterization of model performance can be obtained by481

the histogram of the prediction errors as shown in the lower right panel. The blue his-482

togram is for the residual of model training. The red histogram shows the prediction er-483

ror for the validation data. Although the numerical values of mean and standard devi-484

ation of prediction error shown in this graph are not unacceptably high, it is interest-485

ing to note that the error distribution is skewed toward the negative values.486
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Figure 5. Performance evaluation of the first forecast model. Top panel: Temporal plot of ac-

tual data (blue curve on gray background for training data and black curve on white background

for validation) and regression model output (magenta curve on gray background for post-fit and

red curve on white background for prefit validation). Lower left panel: Scatter plots for training

data (blue dots) and validation data (red dots). Lower right panel: Histogram of difference be-

tween model output and actual data (blue for training data and red for validation data which is

plotted in negative of the frequency)
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As a forecast model for Vx with effectively 2-day lead time, the performance for our487

first model summarized in Figure 5 is not unreasonable. However, we must ask whether488

all 40 covariates are necessary. An examination of the summary statistics in Table 4 re-489

veals that all but 8 of the coefficients have p-values lower than 0.1. This indicates that490

the contributions of many covariate variables are not statistically meaningful. In fact,491

inclusion of unnecessary variables can degrade the performance of a model when applied492

to validation data because the contribution of coefficients αi for these variables, while493

decreasing slightly the post-fit residuals for the training data set, introduces instability494

to model predictions. This phenomenon is often referred to as ”fitting the noise” in an495

over-fit model training. The last step of constructing an effective forecast model using496

SWFT involves pruning unnecessary covariates. This effectively involves preparation of497

new training and validation datasets, running the regression algorithm and evaluating498

the model performance. Tools in SWFT permit the iteration in model development to499

be carried out efficiently. In the next section, we shall present our development of a se-500

ries of models for Vx prediction.501

Datasets in SWFT can be broadly separated into physically meaningful measure-502

ments or indices and anomaly flags. The latter group of variables are useful if we would503

like to produce forecasts for nominal vs. anomalous conditions for the space environment504

or the ionosphere. The forecast models for these anomaly flags are sometimes called clas-505

sification models. The algorithms for training these models often involve logistic regres-506

sion or random decision tree/forest (Mitchell, 1997). On the other hand, a wider range507

of inference models involving nonlinear functions including regression tree-forest type of508

models are also useful. The underlying data preparation and performance scoring for all509

these models are similar. The tools in SWFT are crucial for exploration of all these fore-510

cast strategy developments.511

4 Performance Evaluations512

In this section we focus our attention on the detailed selection of meta-parameters513

for a series of multi-linear regression-based forecast models for Vx. Common features of514

all these models are: one-day lead time for forecast, one-day data latency, 365 days of515

training data and 30 days of validation data. Although these parameters may also af-516

fect the resulting models, fixing them allows us to better understand the effect of selec-517

tion of covariates. The 11 models we examine in this section are results of our exploration518

of different sets of covariate variables in the course of developing a robust forecast model.519

One question we would like to answer in the course of our exploration is whether520

or not our ability to produce reasonable predictions shown in the previous section is pri-521

marily due to the inherent dynamical nature of Vx. In other words, since we have used522

16 past values of Vx as covariates, we would like to know whether or not introduction523

of other covariates can substantially improve the model performance. In order to answer524

this question, we constructed a purely auto-regressive model using past values of vx only.525

In Table 4, the coefficients α9 to α24 are associated with past values of Vx. We note that526

only one of the p-values from this set is lower than 0.1, which is associated with the most527

recently available value of Vx. As a result, in our new model, we selected only two co-528

variates which are the most recent and one-day earlier values for Vx. The performance529

summary is shown in Figure 6.530

Even though this new model has a drastically smaller number of covariates than531

the first model presented in the previous section, it is still able to offer comparable pre-532

dictive accuracy. However, from the top panel, we can already see that the accuracy of533

model is less satisfactory (with a slightly larger standard deviation for training data and534

a larger bias for validation data, for example) than for the previous model. This is not535

surprising because the model has fewer degrees of freedom in fitting the training data.536

The summary statistics in Table 5 shows that even though in the model presented in the537
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Figure 6. Performance evaluation of forecast model using only past values of Vx as covariates.

previous section, only the most recent values of Vx has significant contribution, in the538

new model, not only the weight α2 associated with the one-day old value of Vx in the539

regression model is not substantially smaller in absolute value than α1, its p-value is also540

very small. It is possible that information about future value for Vx in the older values541

of Vx can also be gained from other covariates in the previous model. Therefore, removal542

of those covariates from the new model makes the older time sample of Vx more impor-543

tant.544

Table 5. Results of multi-linear regression analysis for model using only past 2 values of Vx as

covariates. The columns are estimated values for the coefficients (column 2), standard deviation

of the estimated value (column 3), t-statistics of the estimated value (column 4) and the p-values

of the coefficients (column 5). The coefficient α0 corresponds to the constant offset in the regres-

sion. The coefficient αi represents the weight for the ith-covariate variable used in this regression.

The covariates are the two most recent observation of Vx.

Coeff. Estimate SE tStat pValue

α0 -122.78 5.485 -22.384 3.52e-102
α1 1.2887 0.068586 18.79 2.9898e-74
α2 -0.59488 0.068599 -8.6718 7.1015e-18

We would like to see how well the value of Vx can be predicted if none of the re-545

cent values of Vx are used as covariates. The summary statistics are given in Table 6 and546

the performance summary is given Figure 7. From 7 we see a substantial reduction in547

the performance of the model without using any past value of Vx despite of the fact that548

the p-values of the coefficients are quite small.549
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Table 6. Results of multi-linear regression analysis for model without past values of Vx as co-

variate. The columns are estimated values for the coefficients (columns 2,7), standard deviation

of the estimated value (columns 3,8), t-statistics of the estimated value (columns 4,9) and the

p-values of the coefficients (columns 5,10). The coefficient α0 corresponds to the constant offset

in the regression. The coefficient αi represents the weight for the ith-covariate variable used in

this regression. The covariates in this model consists of all variables listed in Table 3 except past

values of Vx and local variation of proton density.

Coeff. Estimate SE tStat pValue Coeff. Estimate SE tStat pValue

α0 -336.01 4.42 -75.9 0 α12 0.86 0.58 1.4 0.13
α1 -1.79 0.44 -4.0 5.9e-05 α13 3.03 1.31 2.3 0.02
α2 -0.64 0.44 -1.4 0.1495 α14 2.97 1.33 2.2 0.02
α3 2.11 0.44 4.7 1.9e-06 α15 -3.19 1.34 -2.3 0.01
α4 0.47 0.44 1.0 0.28 α16 -0.46 1.39 -0.3 0.73
α5 5.25 0.51 10.1 5.8e-24 α17 -0.26 0.05 -4.3 1.2e-05
α6 3.79 0.51 7.3 3.5e-13 α18 -0.10 0.05 -1.7 0.08
α7 1.76 0.76 2.2 0.02 α19 0.09 0.01 5.9 2.9e-09
α8 -0.70 0.77 -0.9 0.36 α20 0.08 0.01 5.1 3.1e-07
α9 0.52 0.07 7.2 7.6e-13 α21 0.08 0.04 2.0 0.03
α10 0.18 0.07 2.4 0.01 α22 0.04 0.04 1.1 0.26
α11 1.08 0.55 1.9 0.05

We explored a total of 11 models with different sets of covariates see Figure 8. Each550

row in the plot on represents one of the 11 models. The color bars in the right panel in-551

dicate the variables and their time history used as covariates for the specific model. The552

left panel provides information on the postfit (red, also referred to as training error which553

corresponds to the difference between model output and actual training data) and pre-554

diction (blue, also referred to as validation error which represents the difference between555

model output and actual data when model is applied to validation data that is not used556

to train the regression models) root-mean square error of Vx in km/s. For example, row557

number 9 corresponds to the first forecast model presented in the previous section and558

row number 11 corresponds to the 2-term auto-regression model discussed earlier in this559

section.560

Figure 8 shows that the difference between the worst performing model with RMSE561

of nearly 78 to the best model with RMSE of 58 is over 20 percent despite of the fact562

that all these models have covariates selected among the most promising variables in SWFT.563

This suggests the usefulness of exhaustively exploring the meta-parameter space for de-564

veloping forecast models. More close examination of the relative performance indicates565

that models with the largest number of covariates such as model 9 has the best fit to the566

training data, its performance on validation data suggests that other models such as mod-567

els 6 and 8 with smaller number of covariates can achieve superior performance by elim-568

inating statistically insignificant covariates. In Table 7 we evaluated the Akaike infor-569

mation criterion (AIC) by assuming the residual error between actual data and model570

predict for both training and validation data follow normal distribution. Since AIC is571

a relative measure of information uncertainty in model prediction with low value indi-572

cating higher quality of prediction (Aho et al., 2014), we can see that model 6 has the573

lowest AIC value judging from the validation data while model 9 has the lowest AIC value574

judging from the training data. While it is possible to speculate a reason for the predic-575

tive performance of each these regression models, we do not feel that space physics prin-576

ciples favorite any one of these over the others.577
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Figure 7. Performance evaluation of forecast model without using any past values of Vx as

covariate.

Table 7. Akaike information criterion (AIC) Values evaluated using training and validation

data.

Model Number Training Validation pValue

1 31856 2715
2 31794 2724
3 30640 2626
4 31662 2752
5 31430 2759
6 27958 2499
7 27946 2513
8 30324 2581
9 27925 2528
10 31185 2717
11 27929 2550

We understand that the comparison between solar wind forecast models presented578

above with physics based models such as WSA, WSA-ENLIL, and CORHEL is prob-579

lematic because the physics based models use much smaller set of space environmental580

parameters to initiate their prediction (Owens et al., 2008). In particular, the amount581

of data used to train models reported in (Owens et al., 2008) is much more extensive than582

used by our regression models. The aim of physics based model is also much broader than583

simply predicting the value of Vx. In particular, by using dataset covering a significant584

portion of a solar cycle, a physics based model may attempt to represent the inherent585

variation in behavior of solar wind over an extended period of time. On the other hand,586

regression based models focus primarily on relatively short-term trends that may be re-587
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Figure 8. Selection of covariates of 11 forecast models for Vx. Left panel shows the RMSE

where red bars represent training or postfit error and blue bars represent validation or prefit

error for the 11 models. The right panel indicates the covariates used in each regression model.

The colored bars indicate the variables used as covariate for a model and the legends 1, 2, 16

indicate the number of past historical samples used for the variables. That, 1 for when only the

most recently available sample is used; 2 for the most two recently available samples were used

and, 16 for when all 16 most recently available samples or entire two recently available days of

measurements are used.
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liable for over specific portion of a solar cycle. Naturally, these models are expected to588

be retrained on a regular basis to catch the latest trends. However, compared to the RMSE589

of over 90 km/s (Owens et al., 2008), the data based Vx forecast models are shown to590

deliver comparable performance as physics based models for solar wind forecast that can591

be used as inputs for thermosphere and ionosphere models at least for the majority ”nom-592

inal” conditions.593

5 Conclusion594

In this manuscript we have presented a case study of constructing a regression based595

forecast model for solar wind velocity or more precisely Vx using the Space Weather Fore-596

cast Testbed. A similar approach can also be used to forecast other components of the597

solar wind. As illustrated in Section 4, SWFT makes experimentation with a large num-598

ber of models straightforward. In fact, even though the multilinear regression models pre-599

sented in this manuscript are commonly used, the same data preparation and performance600

evaluation tools can be used for a wider range of modeling approaches. In particular, an601

immediate extension of the models presented here is a regression-tree model. By sub-602

dividing training data according to the range of the predicted Vx values into smaller sub-603

sets, a new multilinear regression model for each subset can be derived. Mathematically,604

the post-fit residual for the regression-tree model can be reduced to arbitrarily low lev-605

els by continuing the sub-dividing process. Of course this does not guarantee that the606

validation error would be reduced as well. We shall present our the results of these new607

approaches in a subsequent paper.608

It is our belief that the combination of easy access to extensive historic space weather609

data, data preparation and analysis tools and a wide range of machine-learning algorithms610

made available by SWFT can play a significant positive role in promoting the develop-611

ment of new space weather forecast models. It is important to note that these models612

are not limited to purely empirical data-driven models. Computer simulation results us-613

ing physics based model can just as easily be introduced into the SWFT database and614

used in constructing forecast models. A new stand-alone version of SWFT will soon be615

available to the space weather community. It is our wish that more people in space weather616

community would have the opportunity to experiment with SWFT and help to further617

develop SWFT. In fact, as a part of community resource, SWFT provides a platform for618

incorporating much larger variety of space weather observational data than in the cur-619

rent prototype. Inclusion of more extensive data sets such as AMPERE, SuperDARN,620

Van Allen Probes would necessarily presents new technical challenges which may require621

expansion of the current framework for SWFT. However, as a starting point, we are con-622

vinced that SWFT showed great promise of data-driven forecasting approach using machine-623

learning techniques.624
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