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Modeling extreme events

What would be the impact of a
Carrington type event on the geospace
system?

Would our thermosphere-ionosphere-
magnetosphere models be about to cope?

Do the physical processes in the model
operate in the same way during an
extreme event, do they become more
non-linear?

Are there new physical processes we will
need to accommodate and understand?

How do we validate extreme events?




What is it we care about in thermosphere-
ionosphere space weather impacts on
operational system?

Change in drag on a satellite for orbit prediction, collision
avoldance, etc.

* Driven by neutral atmosphere heating, thermal expansion, in-track winds, neutral
composition, NO cooling, wave propagation

Changes 1n the 1onosphere affect communications, navigation,
positioning, which impacts a range of industries: commercial
aviation, maritime, surveying, agriculture, etc.

* Driven by expansion of polar cap and magnetospheric convection, plasmasphere
erosion, auroral ionization, penetration electric fields to low latitudes, dynamo
electric fields, and interaction with the neutral atmosphere winds and composition,
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CTIPe vs CHAMP or GOCE
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Gravity wave propagation from high to low latitude

CTIPe NEUTRAL DENSITY 400km [Kg/m3] 2005—-05—15 00:05UT
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How will the global circulation

evolve, neutral composition change,
Bruinsma, Fedrizzi, et al. and the 1onospheric “negative phase”
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Weimer empirical magnetospheric convection
predictions for Carrington event
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Peak temperature > 3000 K

Neutral Temperature Sept Carrington v2
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Top of model rises from 500 to ~1000 km
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Horizontal winds > 1500 m/s

Zonal Neutral Wind Sept Carrington v2
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Vertical wind > 150 m/s

Vertical Neutral Wind Sept Carrington event
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Mean molecular mass

Mean Molecular Mass Sept Carrington event
Time: 2003-09-02 00:15:00
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Before Storm After Storm
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Conclusions (1)

Response of neutral atmosphere to a Carrington type storm
appears reasonable and model 1s robust, and will likely impact
the 1onosphere appropriately

Large increase 1n Joule heating (~6000 GW), temperature
(~3000 K) and 1on drag winds (1500 m/s), vertical winds
(+/-150 m/s) predicted

Source 1s now at mid-latitudes

Neutral density response and impact on drag will likely scale
linearly (factor of ~5 increase) with expected rapid decay of
orbits, wind response more non-linear (due to transport)

Gravity wave propagation also responds as expected, wave
speed faster due to temperature and sound speed increases,
magnitude of waves greatly increased (factor 2 to 5), poleward
and equatorward propagation from mid-lat sources, and zonal

propagation
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Conclusions (2)

Uncertainty in NO production in this simulation - may make
thermosphere colder in aftermath of storm

Storm circulation no longer pole to equator. Energy input at
mid-latitude, energy spreads (fills in) quickly by wind and wave
transport globally

Neutral composition change weaker as a result; clear negative
1onospheric phase might not be so apparent, not clear if this is
true for more realistic magnetospheric driver with more structure

CTIPe 10onosphere response not yet realistic, requires seamless
transport across latitude

Expect interaction of poleward movement of EIA by penetration
electric field (240 m/s vertical plasma drift from Nair model)
and build up of plasma at mid latitude by “Heelis” effect

Need a time dependent and more expanded polar cap boundary

for escape of plasma and plasmasphere erosion
16



Validation challenges

Make sure at least we can model the biggest events: e.g., Halloween,
Bastille, “Parents Day”, March ’89....

Run MHD codes to check magnetospheric drivers of the system,
expansion of convection equatorward, polar cap boundary, penetration
electric field, inner magnetosphere shielding, degree of structure, etc.

Compare OpenGGCM, SWMF, LFM for consistency
Will the magnetospheric CPCP completely saturate?

= 2000
&

Need a time dependent and more expanded polar cap boundafjj for the
1onosphere — for escape of plasma, plasmasphere erosion, location of
the plasmapause — will we lose most of the 1onosphere for a few days?

Ionospheric response will depend heavily on the magnetospheric
drivers

Thermosphere-ionosphere response will have to rely on understanding
the physical processes — does 1t make sense? (interaction of EIA and
SED, penetration electric field and neutral wind dynamo)
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Neutral density at 400 km [kg/m?]

CTIPe vs CHAMP Dec 2006
Mariangel Fedrizzi
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Ionospheric Storm vs Geomagnetic Storm

* An “1onospheric storm’ are the 1onospheric consequences
of a “geomagnetic storm”

« Traditionally couched as “positive” and “negative’ phases

* Now use terms like “storm enhanced density” and “plasma
erosion”

8

2003 Oct 28 02:59 2003 Oct 31 01:38
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Another space weather hazard:
plasma “bubbles” or 10nospheric irregularities at low latitudes
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Modeling extreme events

What would be the impact of a
Carrington type event on the
geospace system?

* Would our thermosphere-
ionosphere-magnetosphere models
be about to cope?

* Do the physical processes in the
model operate in the same way
during an extreme event, do they
become more non-linear?

» Are there new physical processes
we will need to accommodate and
understand?




