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Abstract

Magnetospheric storms and substorms can enhance the ring
current. This enhancement causes a reduction of the magnetic
field at the Earth’s surface at mid- and low-latitudes that can be
measured by the Dst index. Using a combination of the University
of Michigan’s BATSRUS code and Mei-Ching Fok’s Kinetic Ring
Current model we will study how different real and simulated solar
wind conditions impact the modeled ring current’s energy and
correlate this with changes in recorded Dst. We will also explore
the relative importance of the ionospheric electric field driver and
changes in the magnetic field on the evolution of the ring current.
Additionally, we will compare proton fluxes from our simulation to
fluxes measure by geosynchronous satellites.




BATSRUS Information

- BATSRUS solves the ideal MHD equations using an
adaptive mesh. In this run the smallest resolution
was 1/8 R.. After the initial setup, the grid was
fixed.

~ The box was from =255 to 33 R¢ in the GSM x

direction and —48 to 48 R in the other two directions.

~ We used level 2 ACE data and propagated the solar
wind data from ACE to 33 Rp using an average
velocity.

~ The FACs at 4 R. are mapped along dipole field lines
to the ionosphere to calculate the electrostatic
potential in the ionosphere.
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Fok Model

~ The Fok Ring Current Model calculates the

evolution of the ring current particle fluxes by
solving a bounce-averaged Boltzmann transport
equation.

~ The model uses a combined convection-diffusion

approach included drift, charge exchange, radial
and pitch angle diffusion.

~ The Fok Ring Current Model uses the

lonospheric potential and magnetic field from
the BATSRUS model.

~ The Fok Ring Current Model uses the density

and temperature from the BATSRUS model at
the Ring Current Model’s outer boundary.
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Ring Current (210 keV)

D5/23/2002 Time = 10:40:01 En.= 210.ke¥

zolid line: RC modal bounda

10
3
¥ [Rel
0
—5 IogFH2+tot
Ferv]
8.00
-10 . .
dashed: geesynoronous orbit
-1 =5 0 5 10
x |R
[Rel -
05/23/2002 Time = 12:00:00 En.= 210.keV
zolid line: RC medal bounda
n
5
0
5 logFH+-tot
.00
10 ,
dashed: g2osyncronous orbit
=10 -5 0 5 10
% |R
[Rel e

D5/23/2002 Time = 11:00:00 En.= 210.ke¥

zolid lina: RC_modal bounda
.

10 :
3
¥ [Rel
0
—5 IogFH2+tot
Ferv]
8.00
—10 - __1'
dashed: geosyneronous orbit
-1 =5 0 5 10
x |R
[Rel -
05/23/2002 Time = 12:16:01 En.= 210.keV
zolid line: RC medal bounda
s
5
0
5 logFH+-tot
.00
10 ,
dashed: g2osyncronous orbit
=10 -5 0 5 10
% |R
[Rel e

Figure 3

05,/23/2002 Time = 11:19:59 En.= 210.keV

zolid lina: R modal bounda

5
0
5 logFH+-tot
.00
10 ,
dashed: g2osyncronous orbit
=10 -5 0 5 10
R
x [Re] .00

05/23/2002 Time = 12:36:00 En.= 210.keV

zolid line: RC madal bounda

10
3
vy [Rel
0
5 IogFl—ZHtct
i
6.00
-10 )
dashed: geosyncronabs arbit
-2 =5 0 5 10
x [Rel .00



Ring Current (210 keV)
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Magnetosphere
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~ There 1s a large solar wind den51ty increase between 10:00 and 12:00
(Figure 1). During this time, the magnetosphere compresses and there
1s a large increase in the cross polar cap potential (Figure 2) followed
by an increase in the ring current on the dusk side (Figures 3 and 5).
The proton total energy also increases. Increases in the flux can also
seen at geosynchronous orbit around 11:00 for both model and the
LANL satellite data (Figure 6 and 7).

- Between 12:00 and 13:00, the solar wind density decreases but the
IMF turns southward after 12:10. The cross polar cap potential
remains high, the proton total energy increases, and the Dst index
decreases. A flux increase is seen around 12:16 on the night side.

" Both the model and the data have similar increases around 11:00,
12:00, and 12:40. The data has sharper increases and decreases than
the results from the model. Also the model results show a slightly later
timing at 11:00. From 13:00 to 15:30, the model stays relatively flat at
geosynchronous orbit while the data stays flat for 3 satellites and
decreases for two satellites. The flux 1s much higher in the model.
Around 15:42, there is a flux increase seen in the data that is not seen
in the model. There is a flux decrease in the model around 15:48. A
second increase is seen around 16:40 for both model and data.
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Discussion

~ Around 13:15 the IMF turns northward and stays northward for 2.5
hours. The solar wind density is low for this period. The cross polar
cap potential 1s low. Also the proton total energy remains fairly
constant from 14:00 to 16:00. The flux at geosynchronous orbit is
constant during this time period and the ring current becomes more
symmetric.

" After 15:45, the solar wind density increases and the IMF turns
southward. The cross polar cap potential increases. The ring current
on the night side increases inside geosynchronous orbit. There is a
decrease in proton total energy after 16:00 to about 16:12 then the
energy increases again till 17:02. The early decrease is when the
magnetopause 1s compressed and there are losses on the dayside.
Around 16:12, the flux on the dawnside starts to increase again.
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Comparison between LANL data and model

- " .

" Both had increases in the flux around 11:12
and 15:40.

“In the LANL data, there were decreases in
the flux seen by all three satellites with a
minimum around 13:00 for two satellites and
13:30 for the other satellite.

" The model results from orbit calculations did
not show a significant decrease. The
calculation of the integrated flux showed a
decrease but at a later time.
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Discussion

~ The shock caused a large compression that increased the density in the

magnetosphere and increased the potential in the 1onosphere (Figures
11 and 12). The IMF increased and fluctuated in both B, and B,.
Increases in the proton flux in the model can be seen on the duskside
(Figures 13 and 15). Increases in particle fluxes around 11:12 are seen
in the LANL data.

~ The increases in the proton flux seen in the model occur mainly with

increases in the potential. The flux increase seen at 14:48 does not
have a significant potential increase but does have a small increase in
the density in the tail.

" During the time from 11:00 to 14:00, the proton total energy does not

increase as much as it did for a similar time period for the May 23
event. Both had similar increases near the end of the run.




o -y g

o
N . -

Comparison of May 23 and April 17

~ The minimum solar wind density on May 23, 2002 was
much lower than on April 17, 2002. Also on April 17, the
potential had only one period of low potential. There 1s
significantly more fluctuations in the IMF especially in B,
for April 17 than on May 23.

- For a significant part of the simulation, the ring current
was very asymmetric on April 17 as compared to May 23.
Significant trapping of particles seems to occur on May 23
during the time of the low potential. For April 17, the
proton flux on the dawn side increases after 16:00.

" Also more injections outside geosynchronous orbit are
seen for April 17.
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Solar Wind Input at 33 Ry Cross Polar Cap Potential in
Northern Hemisphere
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“warm-up” period for the ring current.
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Discussion

- Figure 18 shows the solar wind input. The potential increases as the B,

component turns southward (Figure 19). Figure 24 shows the
magnetosphere between 15:00 and 16:00 after the IMF turns
southward. During this time, the magnetic field stretches out until
15:35. Around 15:37, reconnection starts.

" Figure 21 shows the proton flux. After the IMF turns southward, the

flux increases inside geosynchronous orbit. After reconnection, there
1s an injection outside geosynchronous orbit. At geosynchronous orbit
(21 MLT), there 1s an increase in the proton flux when the potential
increases. This increase occurs at different times for different
energies. There is a sharp increase after reconnection that occurs at

approximately the same time for all energies.
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- In example 2, the higher energy fluxes become symmetric
between 15:00 and 17:00. This is similar to the May 23, 2002
event. Both cases had a 2-hour period of low solar wind density
and northward IMF. This allows more trapping of particles since
there is smaller dayside losses. Radial diffusion is probably
significant for the higher energies inside geosynchronous orbit.

- In example 3, the run is not as symmetric as example 2. In this
case the IMF is fluctuating between north and south similar to
the April 17, 2002 event. The April 17, 2002 is more
asymmetric than example 3 probably due to the higher solar
wind density compressing the magnetosphere more and
allowing more losses at the dayside magnetopause.

- In example 2 after the IMF turns southward, there is a flux
dropout in the premidnight sector (especially in the 90-150 keV
energy range). The flux dropout at high energies during growth
phase is the due to B decrease at this substorm phase. In order
to conserve the third adiabatic invariant, ions drift shells expand
to higher L and at the same time particles lose energy. This
causes the flux dropout. In example 3, there is no large flux
dropout.
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